下载此文档

人教高中数学第二讲常用逻辑用语 讲义解析版.docx


高中 高一 上学期 数学 人教版

1340阅读234下载17页864 KB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
人教高中数学第二讲常用逻辑用语 讲义解析版.docx
文档介绍:
第二讲:常用逻辑用语
【考点梳理】
1.充分条件、必要条件与充要条件的概念
若,则是的充分条件,是的必要条件
是的充分不必要条件

是的必要不充分条件

是的充要
条件
是的既不充分也不必要
条件

2.全称命题和特称命题(1)全称量词和存在量词
量词名称
常见量词
符号表示
全称量词
所有、一切、任意、全部、每一个等
存在量词
存在一个、至少有一个、有些、某些等
(2)全称命题和特称命题
  名称
形式  
全称命题
特称命题
结构
对中任意一个,
有成立
存在中的一个,
使成立
简记
否定
【典型题型讲解】
考点一:充分条件与必要条件的判断
【典例例题】
例1.(2022·广东·金山中学高三期末)“”是“点在圆外”的(    )
A.充分不必要条件 B.必要不充分条件
C.充分必要条件 D.既不充分也不必要条件
【答案】B
【详解】将化为标准方程,得
当点在圆外时,有,解得
∴“”是“点”在圆外”的必要不充分条件.
故选:B.
【方法技巧与总结】
1.要明确题中题意,找出条件和结论.
2.充分必要条件在面对集合问题时,一定是小集合推出大集合,而大集合推不出小集合.
【变式训练】
1.已知m,n是两条不重合的直线,是一个平面,,则“”是“”的(       )
A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件
【答案】A
【详解】
由线面垂直的性质知,若,,则成立,即充分性成立;
根据线面垂直的定义,必须垂直平面内的两条相交直线,才有,即必要性不成立.
故选:A.
2.已知且,“函数为增函数”是“函数在上单调递增”的(       )
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
【答案】C
【详解】
函数为增函数,则 ,此时,故函数在上单调递增;当在
上单调递增时, ,,所以,故为增函数.
故选:C
3.在等比数列中,已知,则“”是“”的(       )
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
【答案】A
【详解】
∵公比,∴,∴,
∴,∴,∴,
∴,∴,
又∵,∴,∴,∴,
∴且,
∴且,
即“”是“”的充分不必要条件.
故选:A.
考点二:充分条件与必要条件的应用
【典例例题】
例1.“”是“在上恒成立”的( )
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
【答案】A
在上恒成立,
即在恒成立,
令,则在上恒成立,
故在上单调递增,
所以,
所以
因为,而,
所以“”是“在上恒成立”的充分不必要条件.
故选:A
【方法技巧与总结】
1.集合中推出一定是小集合推大集合,注意包含关系.
2.在充分必要条件求解参数取值范围时,要注意端点是否能取到问题,容易出错.
【变式训练】
1.若是成立的一个充分不必要条件,则实数的取值范围为(       )
A. B. C. D.
【答案】D
【详解】
由题意可得 ,而
则 ,故,
故选:D
2.(多选)“关于的不等式对恒成立”的一个必要不充分条件是(   )
A. B.
C. D.
【答案】BD
由题意,关于的不等式对恒成立,
则,解得,
对于选项A中,“”是“关于的不等式对恒成立”的充要条件;
对于选项B 中,“”是“关于的不等式对恒成立”的必要不充分条件;
对于选项C中,“”是“关于的不等式对恒成立”的充分不必要条件;
对于选项D中,“”是“关于的不等式对恒成立”必要不充分条件.
故选:BD.
3.已知集合,.若“”是“”的充分条件,则实数的取值范围为________.
【答案】
【详解】
函数的对称轴为,开口向上,
所以函数在上递增,
当时,;当时,.
所以.

由于“”是“”的充分条件,
所以,,
解得或,
所以的取值范围是.
故答案为:
考点三:全称量词命题与存在量词命题的真假
【典例例题】
例1.已知,下列四个命题:①,,②,,③,,④,.
其中是真命题的有(       )
A.①③ B.②④ C.①② D.③④
【答案】C
【详解】
对于①,由得:,,,则,①正确;
对于②,,,即,则,②正确;
对于③,函数在上为减函数,而,则,即,,③错误;
对于④,当时,,,即,④错误,
所以所给命题中,真命题的是①②.
故选:C
【方法技巧与总结】
1
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档