下载此文档

人教高中数学预测07 数列(解析版).doc


高中 高一 上学期 数学 人教版

1340阅读234下载31页2.10 MB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
人教高中数学预测07 数列(解析版).doc
文档介绍:
预测07 数 列
概率预测
☆☆☆☆☆
题型预测
选择题与填空题☆☆☆☆
解答题☆☆☆☆☆
考向预测
2021年高考仍将考查:
等差数列与等比数列定义、性质、前项和公式。
考查由递推公式求通项公式与已知前项和或前项和与第项的关系式求通项为重点,特别是数列前项和与关系的应用。
1、等差数列与等比数列定义、性质、前项和公式。
2、考查由递推公式求通项公式与已知前项和或前项和与第项的关系式求通项为重点,特别是数列前项和与关系的应用。
3、运算错位相减法或者裂项相消法以及分组求和求数列的和
4、数列与不等式等知识点的结合
数列是高考重点考查的内容之一,命题形式多种多样,大小均有.其中,小题重点考查等差数列、等比数列基础知识以及数列的递推关系;解答题的难度中等或稍难,将稳定在中等难度.往往在利用方程思想解决数列基本问题后,进一步数列求和,在求和后可与不等式、函数、最值等问题综合.在考查等差数列、等比数列的求和基础上,进一步考查“裂项相消法”、“错位相减法”等,与不等式结合,“放缩”思想及方法尤为重要.
等差数列
1、定义:数列若从第二项开始,每一项与前一项的差是同一个常数,则称是等差数列,这个常数称为的公差,通常用表示
2、等差数列的通项公式:,此通项公式存在以下几种变形:
(1),其中:已知数列中的某项和公差即可求出通项公式
(2):已知等差数列的两项即可求出公差,即项的差除以对应序数的差
(3):已知首项,末项,公差即可计算出项数
3、等差中项:如果成等差数列,则称为的等差中项
(1)等差中项的性质:若为的等差中项,则有即
(2)如果为等差数列,则,均为的等差中项
(3)如果为等差数列,则
4、等差数列通项公式与函数的关系:
,所以该通项公式可看作关于的一次函数,从而可通过函数的角度分析等差数列的性质。
5、等差数列前项和公式:,此公式可有以下变形:
(1)由可得:,作用:在求等差数列前项和时,不一定必须已知,只需已知序数和为的两项即可
(2)由通项公式可得:
作用:① 这个公式也是计算等差数列前项和的主流公式
② ,即是关于项数的二次函数,且不含常数项,可记为的形式。从而可将的变化规律图像化。
(3)当时,
因为
而是的中间项,所以此公式体现了奇数项和与中间项的联系
当时
,即偶数项和与中间两项和的联系
6、等差数列前项和的最值问题:此类问题可从两个角度分析,一个角度是从数列中项的符号分析,另一个角度是从前项和公式入手分析
等比数列
1、定义:数列从第二项开始,后项与前一项的比值为同一个常数,则称为等比数列,这个常数称为数列的公比
注:非零常数列既可视为等差数列,也可视为的等比数列,而常数列只是等差数列
2、等比数列通项公式:,也可以为:
3、等比中项:若成等比数列,则称为的等比中项
(1)若为的等比中项,则有
(2)若为等比数列,则,均为的等比中项
(3)若为等比数列,则有
4、等比数列前项和公式:设数列的前项和为
当时,则为常数列,所以
当时,则
可变形为:,设,可得:
5、由等比数列生成的新等比数列
(1)在等比数列中,等间距的抽取一些项组成的新数列仍为等比数列
(2)已知等比数列,则有
① 数列(为常数)为等比数列
② 数列(为常数)为等比数列,特别的,当时,即为等比数列
③ 数列为等比数列
④ 数列为等比数列
6、等比数列的判定:(假设不是常数列)
(1)定义法(递推公式):
(2)通项公式:(指数类函数)
(3)前项和公式:
数列的求和的方法
(1)等差数列求和公式:

(2)等比数列求和公式:
(3)错位相减法:
通项公式的特点在错位相减法的过程中体现了怎样的作用?通过解题过程我们可以发现:等比的部分使得每项的次数逐次递增,才保证在两边同乘公比时实现了“错位”的效果。而等差的部分错位部分“相减”后保持系数一致(其系数即为等差部分的公差),从而可圈在一起进行等比数列求和。体会到“错位”与“相减”所需要的条件,则可以让我们更灵活的使用这一方法进行数列求和
(4)裂项相消:
的表达式能够拆成形如的形式(),从而在求和时可以进行相邻项(或相隔几项)的相消。从而结果只存在有限几项,达到求和目的。其中通项公式为分式和根式的居多
(5)分组求和 如果数列无法求出通项公式,或者无法从通项公式特点入手求和,那么可以考虑观察数列中的项,通过合理的分组进行求和
(1)利用周期性求和:如果一个数列的项按某个周期循环往复,则在求和时可将一个周期内的项归为一组求和,再
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档