下载此文档

人教高中数学第07讲 指数与指数函数(练)解析版.docx


高中 高二 上学期 数学 人教版

1340阅读234下载7页146 KB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
人教高中数学第07讲 指数与指数函数(练)解析版.docx
文档介绍:
第07讲 指数与指数函数
【练基础】
1.(2021·河北承德模拟)函数f(x)=1-e|x|的图象大致是(  )
【答案】A
【解析】将函数解析式与图象对比分析,因为函数f(x)=1-e|x|是偶函数,且值域是(-∞,0],只有A满足上述两个性质.
2.(2021·江西上饶摸底)已知a=20.4,b=90.2,c=()3,则(  )
A.a<b<c B.a<c<b
C.c<a<b D.c<b<a
【答案】A
【解析】因为c=()3=3=30.75>30.4,b=90.2=30.4,所以b<c,又20.4<30.4,即a<b,所以a<b<c.
3.(2021·湖北省沙市模拟)下列各式比较大小正确的是(  )
A.1.72.5>1.73 B.0.6-1>0.62
C.0.8-0.1>1.250.2 D.1.70.3<0.93.1
【答案】B
【解析】A中,因为函数y=1.7x在R上是增函数,2.5<3,所以1.72.5<1.73.B中,因为y=0.6x在R上是减函数,-1<2,所以0.6-1>0.62.C中,因为0.8-1=1.25,所以问题转化为比较1.250.1与1.250.2的大小.因为y=1.25x在R上是增函数,0.1<0.2,所以1.250.1<1.250.2,即0.8-0.1<1.250.2.D中,因为1.70.3>1,0<0.93.1<1,所以1.70.3>0.93.1.
4.(2021·四川宜宾模拟)若函数f(x)=2·ax+m-n(a>0且a≠1)的图象恒过定点(-1,4),则m+n=(  )
A.3 B.1
C.-1 D.-2
【答案】C
【解析】因为函数f(x)=2·ax+m-n(a>0且a≠1)的图象恒过定点(-1,4),所以-1+m=0,且2·a0-n=4.解得m=1,n=-2,所以m+n=-1.
5.(2021·宁波效实中学高三质检)若函数f(x)=a|2x-4|(a>0,a≠1)满足f(1)=,则f(x)的单调递减区间是 (  )
A.(-∞,2] B.[2,+∞)
C.[-2,+∞) D.(-∞,-2]
【答案】B
【解析】由f(1)=得a2=.
又a>0,所以a=,因此f(x)=.
因为g(x)=|2x-4|在[2,+∞)上单调递增,所以f(x)的单调递减区间是[2,+∞).
6.(2021·湖南省浏阳模拟)函数y=ax(a>0且a≠1)与函数y=(a-1)x2-2x-1在同一个坐标系内的图象可能是(  )
【答案】C
【解析】两个函数分别为指数函数和二次函数,其中二次函数过点(0,-1),故排除A,D;二次函数的对称轴为直线x=,当0<a<1时,指数函数单调递减,<0,C符合题意;当a>1时,指数函数单调递增,>0,B不符合题意,故选C.
7.(2021·广东省深圳模拟)已知函数y=f(x)与y=F(x)的图象关于y轴对称,当函数y=f(x)和y=F(x)在区间[a,b]同时递增或同时递减时,把区间[a,b]叫作函数y=f(x)的“不动区间”,若区间[1,2]为函数y=|2x-t|的“不动区间”,则实数t的取值范围是(  )
A.(0,2] B.
C. D.∪
【答案】C
【解析】因为函数y=
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档