下载此文档

人教高中数学第18讲 利用导数研究函数的单调性(解析版).docx


高中 高二 上学期 数学 人教版

1340阅读234下载23页882 KB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
人教高中数学第18讲 利用导数研究函数的单调性(解析版).docx
文档介绍:
第18讲 利用导数研究函数的单调性
【基础知识全通关】
一、函数的单调性与导数的关系
我们知道,如果函数在某个区间是增函数或减函数,那么就说在这一区间具有单调性,先看下面的例子:
函数的图象如图所示。考虑到曲线的切线的斜率就是函数的导数,从图象可以看到:在区间(2,+∞)内,切线的斜率为正,即时,为增函数;在区间(-∞,2)内,切线的斜率为负,即时,为减函数。
导数的符号与函数的单调性:
一般地,设函数在某个区间内有导数,则在这个区间上,
①若,则在这个区间上为增函数;
②若,则在这个区间上为减函数;
③若恒有,则在这一区间上为常函数.
反之,若在某区间上单调递增,则在该区间上有恒成立(但不恒等于0);若在某区间上单调递减,则在该区间上有恒成立(但不恒等于0).
【微点拨】
1.因为导数的几何意义是曲线切线的斜率,故当在某区间上,即切线斜率为正时,函数在这个区间上为增函数;当在某区间上,即切线斜率为负时,函数在这个区间上为减函数;即导函数的正负决定了原函数的增减。
2.若在某区间上有有限个点使,在其余点恒有,则仍为增函数(减函数的情形完全类似)。
即在某区间上,在这个区间上为增函数;
在这个区间上为减函数,但反之不成立。
3. 在某区间上为增函数在该区间;
在某区间上为减函数在该区间。
在区间(a,b)内,(或)是在区间(a,b)内单调递增(或减)的充分不必要条件!
例如:而f(x)在R上递增.
4.只有在某区间内恒有,这个函数在这个区间上才为常数函数.
5.注意导函数图象与原函数图象间关系.
二、利用导数研究函数的单调性
利用导数判断函数单调性的基本方法
设函数在区间(a,b)内可导,
(1)如果恒有,则函数在(a,b)内为增函数;
(2)如果恒有,则函数在(a,b)内为减函数;
(3)如果恒有,则函数在(a,b)内为常数函数。
【微点拨】
(1)若函数在区间(a,b)内单调递增,则,若函数在(a,b)内单调递减,则。
(2)或恒成立,求参数值的范围的方法——分离参数法:或。
三、利用导数求函数单调区间的基本步骤
(1)确定函数的定义域;
(2)求导数;
(3)在函数的定义域内解不等式或;
(4)确定的单调区间。或者:
令,求出它在定义域内的一切实数根。把这些实数根和函数的间断点(即的无定义点)的横坐标按从小到大的顺序排列起来,然后用这些点把函数的定义区间分成若干个小区间,判断在各个小区间内
的符号。
【微点拨】
1.求函数单调区间时,要注意单调区间一定是函数定义域的子集。
2.求单调区间常常通过列表的方法进行求解,使解题思路步骤更加清晰、明确。
【考点研****一点通】
考点一:求函数的单调区间
例1、确定函数的单调区间.
【解析】。
令,得x<0或x>2,
∴当x<0或x>2时函数是增函数。
因此,函数的单调增区间为(-∞,0)和(2,+∞)。
令,得0<x<2。
∴函数在(0,2)上是减函数,其单调递减区间为(0,2)。
【总结】
(1)解决此类题目,关键是解不等式或。
(2)注意写单调区间时,不是连续的区间一般不能用并集符号“U”。
【变式1-1】确定下列函数的单调区间
(1)y=x3-9x2+24x (2)y=3x-x3
【解析】
(1) y′=(x3-9x2+24x)′=3x2-18x+24=3(x-2)(x-4)
令3(x-2)(x-4)>0,解得x>4或x<2.
∴y=x3-9x2+24x的单调增区间是(4,+∞)和(-∞,2)
令3(x-2)(x-4)<0,解得2<x<4
.∴y=x3-9x2+24x的单调减区间是(2,4)
(2)y′=(3x-x3)′=3-3x2=-3(x2-1)=-3(x+1)(x-1)
令-3(x+1)(x-1)>0,解得-1<x<1.
∴y=3x-x3的单调增区间是(-1,1).
令-3(x+1)(x-1)<0,解得x>1或x<-1.
∴y=3x-x3的单调减区间是(-∞,-1)和(1,+∞)
【点评】
(1)解决此类题目,关键是解不等式或。
(2)注意写单调区间时,不是连续的区间一般不能用并集符号“U”。
【变式1-2】求下列函数的单调区间:
(1)
(2);
(3);
【答案】
(1)。
令3x2―4x+1>0,解得x>1或。
因此,y=x3-2x2+x的单调递增区间为(1,+∞)和。
再令3x2-4x+x<0,解得。
因此,y=x3-2x2+x的单调递减区间为。
(2)函数的定义域为(0,+∞),

令,即, 结合x>0,可解得;
令,即, 结合x>0,可解得
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档