下载此文档

人教高中数学第20讲 导数的综合应用(解析版).docx


高中 高二 上学期 数学 人教版

1340阅读234下载26页1.33 MB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
人教高中数学第20讲 导数的综合应用(解析版).docx
文档介绍:
导数的综合应用
【基础知识网络图】
导数的应用
极值与最值问题
函数的单调性问题
切线斜率、方程
【基础知识全通关】
1、求切线方程的一般方法
(1)求出函数在处的导数;
(2)利用直线的点斜式得切线方程。
求切线方程,首先要判断所给点是否在曲线上.若在曲线上,可用上法求解;若不在曲线上,可设出切点,写出切线方程,结合已知条件求出切点坐标,从而得方程.
2、判定函数的单调性
(1)函数的单调性与其导数的关系
设函数y=f(x)在某个区间内可导,则当时,y=f(x)在相应区间上为增函数;当时,y=f(x) 在相应区间上为减函数;当恒有时,y=f(x)在相应区间上为常数函数。
①在区间(a,b)内,是f(x)在(a,b)内单调递增的充分不必要条件!例如:而f(x)在R上递增。
②学生易误认为只要有点使,则f(x)在(a,b)上是常函数,要指出个别导数为零不影响函数的单调性,同时要强调只有在这个区间内恒有,这个函数y=f(x)在这个区间上才为常数函数。
③要关注导函数图象与原函数图象间关系。
(2)利用导数判断函数单调性的基本步骤
①确定函数f(x)的定义域;
②求导数;
③在定义域内解不等式;
④确定f(x)的单调区间。
函数f(x)在区间(a,b)内是单调递增或递减的判定可依据单调性定义也可利用导数,应根据问题的具体条件适当选用方法,有时须将区间(a,b)划分成若干小区间,在每个小区间上分别判定单调性。
3、函数的极值
(1)极值的概念
一般地,设函数y=f(x)在x=x0及其附近有定义,
①如果对于x0附近的所有点,都有:f(x)<f(x0),称f(x0)为函数f(x)的一个极大值,记作y极大值=f(x0);
②如果对于x0附近的所有点,都有:f(x)>f(x0),称f(x0)为函数f(x)的—个极小值,记作y极小值=f(x0)。
极大值与极小值统称极值。在定义中,取得极值的点称为极值点,极值点是自变量的值,极值指的是函数值。
①在函数的极值定义中,一定要明确函数y=f(x)在x=x0及其附近有定义,否则无从比较。
②函数的极值是就函数在某一点附近的小区间而言的,是一个局部概念,在函数的整个定义域内可能有多个极值,也可能无极值。由定义,极值只是某个点的函数值与它附近点的函数值比较是最大或最小,并不意味着它在函数的整个的定义域内最大或最小。
③极大值与极小值之间无确定的大小关系。即一个函数的极大值未必大于极小值。极小值不一定是整个定义区间上的最小值。
④函数的极值点一定出现在区间的内部,区间的端点不能成为极值点。而使函数取得最大值、最小值的点可能在区间的内部,也可能在区间的端点。
⑤连续函数的某一点是极值点的充要条件是该点两侧的导数异号。我们主要讨论可导函数的极值问题,但是函数的不可导点也可能是极值点。如某些间断点也可能是极值点,再如y=|x|,x=0。
⑥可导函数在某点取得极值,则该点的导数一定为零,反之不成立。在函数取得极值处,如果曲线有切线的话,则切线是水平的,从而有。但反过来不一定。如函数y=x3,在x=0处,曲线的切线是水平的,但这点的函数值既不比它附近的点的函数值大,也不比它附近的点的函数值小。
(2)求极值的步骤
①确定函数的定义域;
②求导数;
③求方程的根;
④检查在方程根左右的值的符号,如果左正右负,则f(x)在这个根处取得极大值;如果左负右正,则f(x)在这个根处取得极小值。 (最好通过列表法)
函数极值只反映函数在某点附近值的大小情况。在某区间上函数的极值可能有若干个,而且极小值未必小于极大值。f'(x0)=0仅是函数f(x)在点x0处有极值的必要条件,点x0是f(x)的极值点,当且仅当在x0的左右f'(x)的符号产生变化。
4、函数的最值
函数的最值表示函数在定义域内值的整体情况。连续函数f(x)在闭区间[a,b]上必有一个最大值和一个最小值,但是最值点可以不唯一;但在开区间(a,b)内连续的函数不一定有最大值和最小值。
(1)最值与极值的区别与联系:
①函数最大值和最小值是比较整个定义域上的函数值得出的,是整个定义区间上的一个概念,而函数的极值则是比较极值点附近两侧的函数值而得出的,是局部的概念;
②极值可以有多个,最大(小)值若存在只有一个;
③极值只能在区间内取得,不能在区间端点取得;而使函数取得最大值、最小值的点可能在区间的内部,也可能在区间的端点。
④有极值的函数不一定有最值,有最值的函数未必有极值,极值可能成为最值。
(2)在区间[a,b]上求函数y=f(x)的最大与最小值的步骤
①求函数y=f(x)在(a,b)内的导数
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档