下载此文档

人教高中数学预测05 解三角形(解析版).doc


高中 高二 上学期 数学 人教版

1340阅读234下载26页1.72 MB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
人教高中数学预测05 解三角形(解析版).doc
文档介绍:
预测05 解三角形
概率预测
☆☆☆☆☆
题型预测
选择题、填空题☆☆☆☆
解答题☆☆☆☆☆
考向预测
2021年高考仍将重点考查已知三角形边角关系利用正弦定理解三角形及利用正余弦定理解平面图形的边、角与面积,题型既有选择也有填空,若为选题可以为基础题,多为中档题,也可为压轴题.
解答题是必考题型,主要考察运用正余弦定理解决边、角以及面积问题,或者求值或者范围等问题,常于不等式等知识点结合
高考对正弦定理和余弦定理的考查较为灵活,题型多变,往往以小题的形式独立考查正弦定理或余弦定理,以解答题的形式综合考查定理的综合应用,多与三角形周长、面积有关;有时也会与平面向量、三角恒等变换等结合考查,试题难度控制在中等或以下,主要考查灵活运用公式求解计算能力、推理论证能力、数学应用意识、数形结合思想等.
1.正、余弦定理
在△ABC中,若角A,B,C所对的边分别是a,b,c,R为△ABC外接圆半径,则
定理
正弦定理
余弦定理
公式
===2R
a2=b2+c2-2bccos A;
b2=c2+a2-2cacos B;
c2=a2+b2-2abcos C
常见变形
(1)a=2Rsin A,b=2Rsin B,c=2Rsin C;
(2)sin A=,sin B=,sin C=;
cos A=;
cos B=;[来源:学|科|网Z|X|X|K]
(3)a∶b∶c=sin A∶sin B∶sin C;
(4)asin B=bsin A,bsin C=csin B,asin C=csin A
cos C=
2.S△ABC=absin C=bcsin A=acsin B==(a+b+c)·r(r是三角形内切圆的半径),并可由此计算R,r.
3.在△ABC中,已知a,b和A时,解的情况如下: 学#¥科网
A为锐角
A为钝角或直角
图形
关系式
a=bsin
bsin A a<a<b
a≥b
a>b
a≤b
解的个数
一解
两解
一解
一解
无解
4.判定三角形形状的两种常用途径
(1)化角为边:利用正弦定理、余弦定理化角为边,通过代数恒等变换,求出边与边之间的关系进行判断;
(2)化边为角:通过正弦定理和余弦定理,化边为角,利用三角变换得出三角形内角之间的关系进行判断;
一、利用正弦定理可解决两类问题
基本类型
一般解法
已知两角及其中一角的对边,如A,B,a
①由A+B+C=180°,求出C;
②根据正弦定理,得=及=,求出边b,c
已知两边及其中一边所对的角,如a,b,A
①根据正弦定理,经讨论求B;
②求出B后,由A+B+C=180°,求出C;
③再根据正弦定理=,求出边c.
[提醒] 也可以根据余弦定理,列出以边c为元的一元二次方程c2-(2bcos A)c+(b2-a2)=0,根据一元二次方程的解法,求边c,然后应用正弦定理或余弦定理,求出B,C
二、利用余弦定理可解决两类问题
已知两边和它们的夹角,如a,b,C
①根据余弦定理c2=a2+b2-2abcos C,求出边c;
②根据cos A=,求出A;
③根据B=180°-(A+C),求出B.
求出第三边后,也可用正弦定理求角,这样往往可以使计算简便,应用正弦定理求角时,为了避开讨论(因为正弦函数在区间(0,π)上是不单调的),应先求较小边所对的角,它必是锐角[来源:学科网ZXXK]
已知三边
可以连续用余弦定理求出两角,常常是分别求较小两边所对的角,再由A+B+C=180°,求出第三个角;
由余弦定理求出一个角后,也可以根据正弦定理求出第二个角,但仍然是先求较小边所对的角
.1、【2020年高考全国III卷理数】在△ABC中,cosC=,AC=4,BC=3,则cosB=
A. B.
C. D.
【答案】A
【解析】在中,,,,
根据余弦定理:,

可得 ,即,
由,
故.
故选:A.
2、【2018年高考全国Ⅱ理数】在中,,,,则
A. B.
C. D.
【答案】A
【解析】因为
所以,故选A.
3、【2018年高考全国Ⅲ理数】的内角的对边分别为,,,若的面积为,则
A. B.
C. D.
【答案】C
【解析】由题可知,所以,
由余弦定理,得,因为,所以,故选C.
4、【2020年高考全国Ⅰ卷理数】如图,在三棱锥P–ABC的平面展开图中,AC=1,,AB⊥AC,AB⊥AD,∠CAE=30°,则cos∠FCB=______________.
【答案】
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档