下载此文档

人教高中数学阅读与欣赏(八) 解析几何减少运算量的常见技巧.doc


高中 高二 上学期 数学 人教版

1340阅读234下载5页166 KB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
人教高中数学阅读与欣赏(八) 解析几何减少运算量的常见技巧.doc
文档介绍:
解析几何减少运算量的常见技巧
技巧一 巧用平面几何性质
已知O为坐标原点,F是椭圆C:+=1(a>b>0)的左焦点,A,B分别为C的左,右顶点.P为C上一点,且PF⊥x轴.过点A的直线l与线段PF交于点M,与y轴交于点E.若直线BM经过OE的中点,则C的离心率为(  )
A.           B.
C. D.
【解析】 设OE的中点为N,如图,因为MF∥OE,所以有=,=.又因为OE=2ON,所以有=·,解得e==,故选A.
【答案】 A
此题也可以用解析法解决,但有一定的计算量,巧用三角形的相似比可简化计算. 
技巧二 设而不求,整体代换
对于直线与圆锥曲线相交所产生的中点弦问题,涉及求中点弦所在直线的方程,或弦的中点的轨迹方程的问题时,常常可以用“点差法”求解.
已知椭圆E:+=1(a>b>0)的右焦点为F(3,0),过点F的直线交E于A,B两点.若AB的中点坐标为M(1,-1),则E的标准方程为(  )
A.+=1 B.+=1
C.+=1 D.+=1
【解析】 通解:设A(x1,y1),B(x2,y2),
则x1+x2=2,y1+y2=-2,
①-②得+=0,
所以kAB==-=.
又kAB==,所以=.
又9=c2=a2-b2,解得b2=9,a2=18,
所以椭圆E的标准方程为+=1.
优解:由kAB·kOM=-得,×=-得,a2=2b2,
又a2-b2=9,所以a2=18,b2=9,
所以椭圆E的标准方程为+=1.
【答案】 D
本题设出A,B两点的坐标,却不求出A,B两点的坐标,巧妙地表达出直线AB的斜率,通过将直线AB的斜率“算两次”建立几何量之间的关系,从而快速解决问题. 
技巧三 巧用“根与系数的关系”,化繁为简
某些涉及线段长度关系的问题可以通过解方程、求坐标,用距离公式计算长度的方法来解;但也可以利用一元二次方程,使相关的点的同名坐标为方程的根,由根与系数的关系求出两根间的关系或有关线段长度间的关系.后者往往计算量小,解题过程简捷.
已知椭圆+y2=1的左顶点为A,过A作两条互相垂直的弦AM,AN交椭圆M,N两点.
(1)当直线AM的斜率为1时,求点M的坐标;
(2)当直线AM的斜率变化时,直线MN是否过x轴上的一定点?若过定点,请给出证明,并求出该定点;若不过定点,请说明理由.
【解】 (1)直线AM的斜率为1时,直线AM的方程为y=x+2,代入椭圆方程并化简得5x2+16x+12=0.
解得x1=-2,x2=-,所以M.
(2)设直线AM的斜率为k,直线AM的方程为y=k(x+2),联立方程
化简得(1+4k2)x2+16k2x+16k2-4=0.
则xA+xM=,又xA=-2,
则xM=-xA-=2-=.
同理,可得xN=.
由(1)知若存在定点,则此点必为P.
证明如下:
因为kMP===,
同理可计算得kPN=.
所以直线MN过x轴上的一定点P.
本例在第(2)问中可应用根与系数的关系求出xM=,这体现了整体思想.这是解决解析几何问题时常用的方法,简单易懂,通过设而不求,大大降低了运算量. 
技巧四 巧妙“换元”减少运算量
变量换元的关
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档