下载此文档

人教考点18 空间中的角度和距离问题(核心考点讲与练)-2023年高考数学一轮复习核心考点讲与练(新高考专用)(解析版).docx


高中 高二 上学期 数学 人教版

1340阅读234下载61页7.85 MB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
人教考点18 空间中的角度和距离问题(核心考点讲与练)-2023年高考数学一轮复习核心考点讲与练(新高考专用)(解析版).docx
文档介绍:
考点18 空间中的角度和距离问题(核心考点讲与练)
1.异面直线所成的角
设a,b分别是两异面直线l1,l2的方向向量,则
a与b的夹角β
l1与l2所成的角θ
范围
(0,π)
求法
cos β=
cos θ=|cos β|=
2.直线和平面所成的角
(1)定义:一条斜线和它在平面内的射影所成的角叫做斜线和平面所成的角,一条直线垂直于平面,则它们所成的角是直角;一条直线和平面平行或在平面内,则它们所成的角是0°的角.
(2)范围:.
3.求直线与平面所成的角
设直线l的方向向量为a,平面α的法向量为n,直线l与平面α所成的角为θ,则sin θ=|cos〈a,n〉|=.
4.二面角
(1)定义:从一条直线出发的两个半平面所组成的图形叫做二面角;
(2)二面角的平面角:在二面角的棱上任取一点,以该点为垂足,在两个半平面内分别作垂直于棱的两条射线,这两条射线所构成的角叫做二面角的平面角.
(3)二面角的范围:[0,π].
5.求二面角的大小
(1)如图①,AB,CD是二面角α-l-β的两个面内与棱l垂直的直线,则二面角的大小θ=__〈,〉.
(2)如图②③,n1,n2 分别是二面角α-l-β的两个半平面α,β的法向量,则二面角的大小θ满足|cos θ|=|cos〈n1,n2〉|,二面角的平面角大小是向量n1与n2的夹角(或其补角).
6.点到平面的距离
用向量方法求点B到平面距离基本思路:确定平面法向量, 在平面内取一点A,求向量到法向量的投影向量,投影向量的长度即为所要求的距离.如图平面α的法向量为n,点B到平面α的距离d=.
1.异面直线所成的角,若向量a、b分别是异面直线与的方向向量,异面直线与所成的角为,则;.
2.设直线的方向向量为,平面的一个法向量为,直线与平面所成的角为,则;.
3.设向量为m平面的一个法向量,向量n为平面的一个法向量,平面与平面所称的二面角为,则;. 或.
4.点到平面的距离的求法
如图,设AB为平面α的一条斜线段,n为平面α的法向量,则点B到平面α的距离d=.
5.求参数的值与范围是高中数学中的常见题型.立体几何中含参数的问题,解决起来既有常规的函数和不等式法,亦有具有立体几何特征的极限位置、几何直观、化曲为直等一些特殊方法.
6.存在性问题,先假设存在,推证满足条件的结论,若结论正确则存在,若结论不正确则不存在.
解决存在性问题应注意以下几点:
(1)当条件和结论不唯一时要分类讨论;
(2)当给出结论而要推导出存在的条件时,先假设成立,再推出条件;
(3)当条件和结论都不知,按常规方法解题很难时,要思维开放,采取另外的途径.
线线、线面、面面角
1.(2021贵州省遵义航天高级中学高三月考)如图,四棱锥中,底面是矩形,,,,,是等腰三角形,点是棱的中点,则异面直线与所成角的余弦值是( )
A. B. C. D.
【答案】B
【分析】以为坐标原点,建立坐标系,写出点的坐标,以及直线的方向向量,即可用向量法求得结果.
【详解】因为,,两两垂直,
以为原点,,,分别为,,轴建立空间直角坐标系.
又因为,,
所以,,,,
因为是棱的中点,所以,
所以,,
所以,
故选:B.
2.(2022·湖南衡阳·二模)如图,已知圆台的下底面半径为2,上底面半径为1,母线与底面所成的角为为母线,平面平面为的中点.
(1)证明:平面平面;
(2)当点为线段的中点时,求直线与平面所成角的正弦值.
【答案】(1)证明见解析;(2).
【分析】(1)过点作平面的垂线,垂足为,证明平面,原题即得证;
(2)以为坐标原点,所在直线分别为轴、轴、轴,建立如图所示的空间直角坐标系,利用向量法求直线与平面所成角的正弦值.
(1)证明:过点作平面的垂线,垂足为,
如图,则是的中点,所以.
又,所以.
连接,因为,所以为等边三角形.
因为点为的中点,所以
因为平面平面,平面平面,且平面,
所以平面.
因为平面,所以.
又因为平面平面,
所以平面.
因为平面,所以平面平面.
(2)解:以为坐标原点,所在直线分别为轴、轴、轴,建立如图所示的空间直角坐标系,
则,
设平面的一个法向量为,
则,即取,得,
所以,
又,
所以
所以直线与平面所成角的正弦值为.
3.(2022·河南河南·三模(理))如图,为圆锥的顶点,是圆锥底面的圆心,为底面直径,,是底面的内接正三角形,且,是线段上一点.
(1)若平面,求;
(2)当
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档