下载此文档

人教考向28 等比数列及其前n项和(重点)-备战2022年高考数学一轮复习考点微专题.doc


高中 高二 上学期 数学 人教版

1340阅读234下载25页2.29 MB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
人教考向28 等比数列及其前n项和(重点)-备战2022年高考数学一轮复习考点微专题.doc
文档介绍:
考向28 等比数列及其前n项和
1.(2021·全国高考真题(文))记为等比数列的前n项和.若,,则( )
A.7 B.8 C.9 D.10
【答案】A
【分析】
根据题目条件可得,,成等比数列,从而求出,进一步求出答案.
【详解】
∵为等比数列的前n项和,
∴,,成等比数列
∴,
∴,
∴.
故选:A.
2.(2016·全国高考真题(文))已知是公差为3的等差数列,数列满足.
(Ⅰ)求的通项公式; (Ⅱ)求的前n项和.
【答案】(Ⅰ);(Ⅱ)见解析.
【详解】
试题分析:(Ⅰ)用等差数列通项公式求;(Ⅱ)求出通项,再利用等比数列求和公式来求.
试题解析:(Ⅰ)由已知,得,所以数列是首项为2,公差为3的等差数列,通项公式为
.
(Ⅱ)由(Ⅰ)和 得,因此是首项为1,公比为的等比数列.记的前项和为,则
【考点】等差数列与等比数列
【名师点睛】等差、等比数列各有五个基本量,两组基本公式,而这两组公式可看作多元方程,利用这些方程可将等差、等比数列中的运算问题转化为解关于基本量的方程(组),因此可以说数列中的绝大部分运算题可看作方程应用题,所以用方程思想解决数列问题是一种行之有效的方法.
1、等比数列基本运算的解题技巧
(1)求等比数列的基本量问题,一般是“知三求二”问题,其核心思想是解方程(组),一般步骤是:①由已知条件列出首项和公比的方程(组);②求出首项和公比;③求出项数或前n项和等其余量.
(2)运用整体思想,达到设而不求的目的;运用等比定理,即q===…==达到化简目的;运用分类讨论思想,讨论q=1和q≠1等问题.
2、利用等比数列性质解题应注意的2点
(1)在解决等比数列的有关问题时,要注意挖掘隐含条件,利用性质,特别是性质“若m+n=p+q,则am·an=ap·aq”,可以减少运算量,提高解题速度.
(2)在应用相应性质解题时,要注意性质成立的前提条件,有时需要进行适当变形.此外,解题时注意设而不求思想的运用.
3、等比数列的判断与证明的常用方法
1.等比数列的概念
(1)定义:如果一个数列从第2项起,每一项与它的前一项的比都等于同一个常数,那么这个数列叫做等比数列,这个常数叫做等比数列的公比,公比通常用字母q表示(显然q≠0).
数学语言表达式:=q(n≥2,q为非零常数).
(2)等比中项:如果在a与b中间插入一个数G,使a,G,b成等比数列,那么G叫做a与b的等比中项.此时
G2=ab.
2. 等比数列的通项公式及前n项和公式
(1)若等比数列{an}的首项为a1,公比是q,则其通项公式为an=a1qn-1;
通项公式的推广:an=amqn-m.
(2)等比数列的前n项和公式:当q=1时,Sn=na1;当q≠1时,Sn==.
3.等比数列的性质
已知{an}是等比数列,Sn是数列{an}的前n项和.
(1)若k+l=m+n(k,l,m,n∈N*),则有ak·al=am·an.
(2)相隔等距离的项组成的数列仍是等比数列,即ak,ak+m,ak+2m,…仍是等比数列,公比为qm.
(3)当q≠-1,或q=-1且n为奇数时,Sn,S2n-Sn,S3n-S2n,…仍成等比数列,其公比为qn.
【知识拓展】
1.若数列{an},{bn}(项数相同)是等比数列,则数列{c·an}(c≠0),{|an|},{a},,{an·bn},也是等比数列.
2.由an+1=qan,q≠0,并不能立即断言{an}为等比数列,还要验证a1≠0.
3.在运用等比数列的前n项和公式时,必须注意对q=1与q≠1分类讨论,防止因忽略q=1这一特殊情形而导致解题失误.
4.三个数成等比数列,通常设为,x,xq;四个符号相同的数成等比数列,通常设为,,xq,xq3.

1.(2021·云南昆明市·高三(文))已知递增等比数列,,,,则( )
A.8 B.16 C.32 D.64
2.(2021·河南郑州十一中高二期末)已知数列为等比数列,其前项和为,若,,则( ).
A.或32 B.或64 C.2或 D.2或
3.(2021·吉林长春市·高三(理))若无穷等比数列的各项均大于1,且满足,,则公比________.
4.(2022·全国高三专题练****已知数列满足:,,为数列的前项和,则___________.
1.(2021·赤峰二中(理))在公比q为整数的等比数列{an}中,Sn是数列{an}的前n项和.若a1·a4=32,a2+a3=12,则下列说法中,正确的是( )
①数列{}是等比数列;
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档