下载此文档

人教专题8.7 立体几何中的向量方法 2022年高考数学一轮复习讲练测(新教材新高考)(讲)解析版.docx


高中 高二 上学期 数学 人教版

1340阅读234下载113页1.23 MB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
人教专题8.7 立体几何中的向量方法 2022年高考数学一轮复习讲练测(新教材新高考)(讲)解析版.docx
文档介绍:
专题8.7 立体几何中的向量方法
新课程考试要求
1.理解直线的方向向量与平面的法向量.
2.能用向量语言表述直线与直线、直线与平面、平面与平面的垂直、平行关系.
3.能用向量方法证明有关直线和平面位置关系的一些定理(包括三垂线定理).
4.会用向量方法求解两异面直线所成角、直线与平面所成角、二面角的问题.
核心素养
本节涉及的数学核心素养:数学运算、逻辑推理、直观想象等.
考向预测
(1)以几何体为载体,综合考查平行或垂直关系证明,以及角与距离的计算.
(2)利用几何法证明平行、垂直关系,利用空间向量方法求角或距离.
(3)利用空间向量证明平行或垂直是高考的热点,内容以解答题中的一问为主,主要围绕考查空间直角坐标系的建立、空间向量的坐标运算能力和分析解决问题的能力命制试题,以多面体为载体、证明线面(面面)的平行(垂直)关系是主要命题方向.空间的角与距离的计算(特别是角的计算)是高考热点,一般以大题的条件或一小问形式呈现,考查用向量方法解决立体几何问题,将空间几何元素之间的位置关系转化为数量关系,并通过计算解决立体几何问题.距离问题往往在与有关面积、体积的计算中加以考查.此类问题往往属于“证算并重”题,即第一问用几何法证明平行关系或垂直关系,第二问则通过建立空间直角坐标系,利用空间向量方法进一步求角或距离.
【知识清单】
知识点1.利用空间向量证明平行问题
1.直线的方向向量与平面的法向量的确定
①直线的方向向量:l是空间一直线,A,B是直线l上任意两点,则称为直线l的方向向量,与平行的任意非零向量也是直线l的方向向量.
②平面的法向量可利用方程组求出:设a,b是平面α内两不共线向量,n为平面α的法向量,则求法向量的方程组为
2.用向量证明空间中的平行关系
①设直线l1和l2的方向向量分别为v1和v2,则l1∥l2(或l1与l2重合)⇔v1∥v2.
②设直线l的方向向量为v,与平面α共面的两个不共线向量v1和v2,则l∥α或l⊂α⇔存在两个实数x,y,使
v=xv1+yv2.
③设直线l的方向向量为v,平面α的法向量为u,则l∥α或l⊂α⇔v⊥u.
④设平面α和β的法向量分别为u1,u2,则α∥β⇔u1∥u2.
知识点2.利用空间向量证明垂直问题
1. 用向量证明空间中的垂直关系
①设直线l1和l2的方向向量分别为v1和v2,则l1⊥l2⇔v1⊥v2⇔v1·v2=0.
②设直线l的方向向量为v,平面α的法向量为u,则l⊥α⇔v∥u.
③设平面α和β的法向量分别为u1和u2,则α⊥β⇔u1⊥u2⇔u1·u2=0.
2.共线与垂直的坐标表示
设a=(a1,a2,a3),b=(b1,b2,b3),则a∥b⇔a=λb⇔a1=λb1,a2=λb2,a3=λb3(λ∈R),
a⊥b⇔a·b=0⇔a1b1+a2b2+a3b3=0(a,b均为非零向量).
知识点3.异面直线所成的角
1.两条异面直线所成的角
①定义:设a,b是两条异面直线,过空间任一点O作直线a′∥a,b′∥b,则a′与b′所夹的锐角或直角叫做a与b所成的角.
②范围:两异面直线所成角θ的取值范围是.
③向量求法:设直线a,b的方向向量为a,b,其夹角为φ,则有.
知识点4.直线与平面所成角
1.直线和平面所成角的求法:如图所示,设直线l的方向向量为e,平面α的法向量为n,直线l与平面α
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档