课时素养评价
三 分层抽样与系统抽样
(20分钟·35分)
1.(2020·怀宁高一检测)现要完成下列3项抽样调查:①从20罐奶粉中抽取4罐进行食品安全卫生检查;②高二年级有2 000名学生,为调查学生的学****情况抽取一个容量为20的样本;③从某社区100 户高收入家庭,270户中等收入家庭,80户低收入家庭中选出45户进行消费水平调查.较为合理的抽样方法是
( )
A.①系统抽样,②简单随机抽样,③分层抽样
B.①简单随机抽样,②分层抽样,③系统抽样
C.①分层抽样,②系统抽样,③简单随机抽样
D.①简单随机抽样,②系统抽样,③分层抽样
【解析】选D.在①中因为个体数量较少,采用简单随机抽样即可;在②中,因为个体数量多,故采用系统抽样较好;在③中,因为高收入家庭,中等收入家庭和低收入家庭的消费水平差异明显,故采用分层抽样较好.
2.在对101个人进行抽样时,先采用抽签法从中剔除一个人,再在剩余的100人中随机抽取10 人,那么下列说法正确的是 ( )
A.这种抽样方法对于被剔除的个体是不公平的,因为他们失去了被抽到的机会
B.每个人在整个抽样过程中被抽到的机会均等,因为每个人被剔除的可能性相等,那么,不被剔除的机会也是均等的
C.由于采用了两步进行抽样,所以无法判断每个人被抽到的可能性是多少
D.每个人被抽到的可能性不相等
【解析】选B.由于第一次剔除时采用抽签法,对每个人来说可能性相等,然后随机抽取10人,对每个人的机会也相等,所以总的来说,每个人被抽到的机会是均等的.
3.(2020·沧州高一检测)为调查学生观看电影《我和我的祖国》的情况,采用分层抽样的方法,从某中学3 000人(其中高一年级1 200人,高二年级1 000人,高三年级800人)中抽取n人.已知从高一抽取了18人,则从高二和高三年级共抽取的人数为 ( )
A.24 B.27 C.30 D.32
【解析】选B.根据分层抽样的等比例抽样的性质,
设从高二和高三抽取x人,可得=,
解得x=27.
4.有20个同学,编号为1~20,现在从中抽取4人的作文卷进行调查,用系统抽样方法确定所抽的编号为 ( )
A.5,10,15,20 B.2,6,10,14
C.2,4,6,8 D.5,8,11,14
【解析】选A.将20个同学分成4个组,每组5个号,间距为5.
5.某单位有职工72人,现需用系统抽样法从中抽取一个样本,若样本容量为n,则不需要剔除个体,若样本容量为n+1,则需剔除2个个体,则n=________.
【解析】由题意知n为72的约数,n+1为70的约数,其中72的约数有1,2,3,4,6,8,9,12,18,24,36,72,其中加1能被70整除的有1,4,6,9,其中n=1不符合题意,故n=4或6或9.
答案:4或6或9
6.某学校有30个班级,每班50名学生,上级要到学校进行体育达标验收.需要抽取10%的学生进行体育项目的测验.请你制定一个简便易行的抽样方案.(写出实施步骤)
【解析】该校共有1 500名学生,需抽取容量为1 500×10%=150的样本.抽样的实施步骤:
可将每个班的学生按学号分成5段,每段10名学生.用简单随机抽样的方法在1~10中抽取一个起始号码l,则每个班的l,10+l,20+l,30+l,40+l.如果l=6,那么6,16,26,36,46号学生入样.将30个班取出的学生放在一起即组成一个容量为150的样本.
【拓展提升】辨析:简单随机抽样、系统抽样、分层抽样
(1)共同点:都能保证在抽样过程中,每个个体被抽到的概率是相等的,体现了这些抽样方法的客观性和公平性.
(2)联系:简单随机抽样是最简单和最基本的抽样方法,通常用抽签法和随机数法来实现,在进行系统抽样和分层抽样的时候都要用到简单随机抽样的方法.
(3)适用条件:当总体中的个体数较少的时候,常采用简单随机抽样方法;当总体中的个体数较多的时候,常采用系统抽样方法;当已知总体由差异明显的几部分组成的时候,常采用分层抽样方法.
(30分钟·60分)
一、选择题(每小题5分,共25分)
1.问题:①有1 000个乒乓球分别装在3个箱子内,其中红色箱子内有500个,蓝色箱子内有200个,黄色箱子内有300个,现从中抽取一个容量为100的样本;
②从20名学生中选出3名参加座谈会.
方法:Ⅰ.简单随机抽样;Ⅱ分层抽样.其中问题与方法能配对的是 ( )
A.①Ⅰ,②Ⅱ B.①Ⅱ,②Ⅰ
C.①Ⅱ,②Ⅱ D.①Ⅰ,②Ⅰ
【解析】选B.对于①,由于箱子