2017学年第一学期上大附中期末考试
高二年级 数学试卷
一. 填空题(共36分)
1. .
2. 双曲线的渐近线方程是 .
3. 已知矩阵,则 .
4.已知,,若,则实数 .
5. 行列式中,第2行第1列元素的代数余子式的值为,则实数 .
6. 已知直线:与:平行,则k的值是 .
7.若向量的夹角为,,则 .
8.已知实数、满足条件,则的最大值为 .
9.曲线C的方程是,则曲线C被坐标轴所截的线段长 .
10. 椭圆上一点到焦点的距离为4,为原点,为的中点,则 .
11.设是曲线上的点,,,则
的最大值为 .
12、已知各项均为正数的数列满足(),且,则首项
所有可能取值中最大值为 .
二. 选择题(每题4分,共16分)
13. 已知复数(为虚数单位),在复平面内,对应的点在( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
14. 在平行四边形ABCD中,下列结论中错误的是( )
(A)(B)(C)(D)
15.已知,,则对应的点的轨迹为( )
(A) 椭圆 (B) 双曲线 (C) 抛物线 (D) 线段
16.在平面直角坐标系中,点A(1,2)、点B(3,1)到直线l的距离分别为1、2,则符合条件的直线l的条数为( )
(A)、1 ; (B)、2 ; (C)、3; (D)、4.
三. 解答题(共48分)
17.(8分)已知复数.
(1)比较的大小;
(2)判断复数在复平面上所对应的点与圆的位置关系.
18.(8分)已知
(1)当时,求直线AB;
(2)当,求直线AB的倾斜角α的取值范围.
19.(8分)已知关于的方程:,R表示圆.
(1)求的取值范围;
(2)若该圆与直线:相交于两点,且=,求实数的值.
20、(10分)已知点、依次为双曲线的左右焦点,,,
(1)若,以为方向向量的直线经过,求到的距离;
(2)若双曲线上存在点,使得,求实数的取值范围.
21、(14分)如图,直线与抛物线(常数)相交于不同的两点、,且(为定值),线段的中点为,与直线平行的切线的切点为(不与抛物线对称轴平行或重合且与抛物线只有一个公共点的直线称为抛物线的切线,这个公共点为切点).
用、表示出点、点的坐标,并证明垂直于轴;
(2)求的面积,证明的面积与、无关,只与有关;
(3)小明所在的兴趣小组完成上面两个小题后,小明连、,再作与、平行的切线,切点分别为、,小明马上写出了、的面积,由此小明求出了直线与抛物线围成的面积,你认为小明能做到吗?请你说出理由.
2017学年第一学期上大附中期末考试
高二年级 数学试卷
一. 填空题(共36分)
1. 2