2016-2017学年湖北省襄阳市枣阳市育才中学高二(上)期中数学试卷
一、选择题(本大题12小题,每小题5分,共60分)
1.某考察团对全国10大城市进行职工人均工资水平x(千元)与居民人均消费水平y(千元)统计调查发现,y与x具有相关关系,回归方程为=0.66x+1.562.若某城市居民人均消费水平为7.675(千元),估计该城市人均消费额占人均工资收入的百分比约为( )
A.83% B.72% C.67% D.66%
2.某班级有50名学生,其中有30名男生和20名女生,随机询问了该班五名男生和五名女生在某次数学测验中的成绩,五名男生的成绩分别为86,94,88,92,90,五名女生的成绩分别为88,93,93,88,93,下列说法正确的是( )
A.这种抽样方法是一种分层抽样
B.这种抽样方法是一种系统抽样
C.这五名男生成绩的方差大于这五名女生成绩的方差
D.该班男生成绩的平均数大于该班女生成绩的平均数
3.如图是某社区工会对当地企业工人月收入情况进行一次抽样调查后画出的频率分布直方图,其中第二组月收入在[1.5,2)千元的频数为300,则此次抽样的样本容量为( )
A.1000 B.2000 C.3000 D.4000
4.如图,在圆心角为120°的扇形OAB中,以OA为直径作一个半圆,若在扇形OAB内随机取一点,则此点取自阴影部分的概率是( )
A. B. C. D.
5.以下四个命题中:
①为了了解800名学生对学校某项教改试验的意见,打算从中抽取一个容量为40的样本,考虑用系统抽样,则分段的间隔k为40.
②线性回归直线方程=x+恒过样本中心(,),且至少过一个样本点;
③在某项测量中,测量结果ξ服从正态分布N(2,σ2)(σ>0).若ξ在(﹣∞,1)内取值的概率为0.1,则ξ在(2,3)内取值的概率为0.4;
其中真命题的个数为( )
A.0 B.1 C.2 D.3
6.设点(a,b)是区域内的任意一点,则使函数f(x)=ax2﹣2bx+3在区间[,+∞)上是增函数的概率为( )
A. B. C. D.
7.利用简单随机抽样从某小区抽取100户居民进行月用电量调查,发现其用电量都在50到350度之间,频率分布直方图如图所示.在这些用户中,用电量落在区间[150,250]内的户数为( )
A.46 B.48 C.50 D.52
8.某一考点有64个试室,试室编号为001~064,现根据试室号,采用系统抽样的方法,抽取8个试室进行监控抽查,已抽看了005试室号,则下列可能被抽到的试室号是( )
A.051 B.052 C.053 D.055
9.两位同学一起去一家单位应聘,面试前单位负责人对他们说:“我们要从面试的人中招聘3人,你们俩同时被招聘进来的概率是”. 根据这位负责人的话可以推断出参加面试的人数为( )
A.21 B.35 C.42 D.70
10.将十进制的数2015化成二进制的数是( )
A.111101111(2) B.1111011111(2) C.**********(2) D.**********(2)
11.在区间[0,2]上随机地取一个数x,则事件“﹣1≤log(x+)≤1”发生的概率为( )
A. B. C. D.
12.10名同学参加投篮比赛,每人投20球,投中的次数用茎叶图表示(如图),设其平均数为a,中位数为b,众数为c,则有( )
A.a>b>c B.b>c>a C.c>a>b D.c>b>a
二、填空题
13.已知A、B、C相互独立,如果P(AB)=,,, = .
14.高二年级某班共有60名学生,在一次考试中,其数学成绩满足正态分布,数学平均分为100分,若P(x≤80)=0.1(x表示本班学生数学分数),求分数在[100,120]的人数 .
15.甲、乙两名同学各自等可能地从数学、物理、化学、生物四个兴趣小组中选择一个小组参加活动,则他们选择相同小组的概率为 .
16.如图是某赛季甲乙两名篮球运动员每场比赛得分的茎叶图,则甲乙两人比赛得分的中位数之和是 .
三、解答题
17.某数学教师对所任教的两个班级各抽取20名学生进行测试,分数分布如表:
分数区间
甲班频率
乙班频率
[0,30)
0.1
0.2
[30,60)
0.2
0.2
[60,90)
0.3
0.3
[90,120)
0.2
0.2
[120,150)
0.2
0.1
(Ⅰ)若成绩120分以上(含120分)为优秀,求从乙班参加测试的90分以上(含90分)的同学中,随机任取2名同学,