下载此文档

3.3.2 抛物线的简单几何性质 同步课时训练-高二上学期数学人教A版选修一(含解析).docx


高中 高二 上学期 数学 人教版

1340阅读234下载16页979 KB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
3.3.2 抛物线的简单几何性质 同步课时训练-高二上学期数学人教A版选修一(含解析).docx
文档介绍:
2021-2022学年高二数学(人教A版2019选择性必修一)
3.3.2 抛物线的简单几何性质 同步课时训练
一、单选题。本大题共8小题,每小题只有一个选项符合题意。
1.如图,在抛物线的准线上任取一点(异于准线与x轴的交点),连接并延长交抛物线于点,过点作平行于轴的直线交抛物线于点,则直线与轴的交点坐标为( )
A.与点位置有关 B.
C. D.
2.过抛物线的焦点作直线交抛物线于,两点(,的横坐标不相等),弦的垂直平分线交轴于点,若,则( )
A.14 B.16 C.18 D.20
3.已知动圆M经过点A(3,0),且与直线l:x=-3相切,则动圆圆心M的轨迹方程为( )
A.y2=12x B.y2=-12x
C.x2=12y D.x2=12y
4.如图,过抛物线的焦点的直线交抛物线于点,,交其准线于点,准线与对称轴交于点,若,且,则此抛物线的方程为( )
A. B. C. D.
5.在抛物线型内壁光滑的容器内放一个球,其通过中心轴的纵剖面图如图所示,圆心在轴上,抛物线顶点在坐标原点,已知抛物线方程是
,圆的半径为,若圆的大小变化时,圆上的点无法触及抛物线的顶点,则圆的半径的取值范围是( )
A. B. C. D.
6.已知抛物线的焦点为F,点是抛物线C上一点,以点M为圆心的圆与直线交于E,G两点,若,则抛物线C的方程是( )
A. B. C. D.
7.P为抛物线y2=2px的焦点弦AB的中点,A,B,P三点到抛物线准线的距离分别是|AA1|,|BB1|,|PP1|,则有( )
A.|PP1||AA1|+|BB1| B.|PP1||AB|
C.|PP1||AB| D.|PP1||AB|
8.已知抛物线的焦点为F,,点是抛物线上的动点,则当的值最小时,=( )
A.1 B.2 C. D.4
二、多选题。本大题共4小题,每小题有两项或以上符合题意。
9.对于抛物线上,下列描述正确的是( )
A.开口向上,焦点为 B.开口向上,焦点为
C.焦点到准线的距离为4 D.准线方程为
10.平面内到定点和到定直线的距离相等的动点的轨迹为曲线.则( )
A.曲线的方程为
B.曲线关于轴对称
C.当点在曲线上时,
D.当点在曲线上时,点到直线的距离
11.已知抛物线的焦点为,圆与抛物线交于,两点,点为劣弧上不同于,的一个动点,过点作平行于轴的直线交抛物线于点,则( )
A.点的纵坐标的取值范围是
B.等于点到抛物线的准线的距离
C.圆的圆心到抛物线的准线的距离为2
D.周长的取值范围是
12.已知抛物线:的焦点为、准线为,过点的直线与抛物线交于两点,,点在上的射影为,则( )
A.若,则 B.以为直径的圆与准线相切
C.设,则 D.过点与抛物线有且仅有一个公共点的直线至多有2条
三、填空题。本大题共4小题。
13.抛物线型塔桥的顶点距水面2米时,水面宽8米,若水面上升1米,则此时水面宽为___________米.
14.已知抛物线的顶点为坐标原点,对称轴为轴,且与圆相交的公共弦长为,则抛物线的方程为______.
15.如图所示,已知抛物线C:y2=8x的焦点为F,准线l与x轴的交点为K,点A在抛物线C上,且在x轴的上方,过点A作AB⊥l于B,|AK|=|AF|,则△AFK的面积为________.
16.已知为抛物线的焦点,过作斜率为的直线和抛物线交于,两点,延长,交抛物线于
,两点,直线的斜率为.若,则______.
四、解答题。本大题共6小题,解答过程必修有必要的文字说明,公式和解题过程。
17.如图,过抛物线的焦点F的直线l交抛物线于点A,B,交其准线于点C,若,且,求此抛物线的方程.
18.已知抛物线的焦点为,点在上,且(为坐标原点).
(1)求的方程;
(2)若是上的两个动点,且两点的横坐标之和为.
(ⅰ)设线段的中垂线为,证明:恒过定点.
(ⅱ)设(ⅰ)中定点为,当取最大值时,且,位于直线两侧时,求四边形的面积.
19. 已知抛物线C:y2=4x,A,B,其中m>0,过B的直线l交抛物线C于M,N.
(1)当m=5,且直线l垂直于x轴时,求证:△AMN为直角三角形;
(2)若=+,当点P在直线l上时,求实数m,使得AM⊥AN.
20.已知抛物线C:y2=2px(p>0)的焦点为F,点P(t,﹣2)在C上,且|PF|=2|OF|(O为坐标原点).
(1)求C的方程;
(2)若A,B是C上
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档