2.3 数学归纳法
一、选择题(每小题5分,共20分)
1.一个关于自然数n的命题,如果验证当n=1时命题成立,并在假设当n=k(k≥1且k∈N*)时命题成立的基础上,证明了当n=k+2时命题成立,那么综合上述,对于( )
A.一切正整数命题成立
B.一切正奇数命题成立
C.一切正偶数命题成立
D.以上都不对
2.在数列{an}中,an=1-+-+…+-,则ak+1=( )
A.ak+
B.ak+-
C.ak+
D.ak+-
3.设平面内有k条直线,其中任何两条不平行,任何三条不共点,设k条直线的交点个数为f(k),则f(k+1)与f(k)的关系是( )
A.f(k+1)=f(k)+k+1
B.f(k+1)=f(k)+k-1
C.f(k+1)=f(k)+k
D.f(k+1)=f(k)+k+2
4.用数学归纳法证明“当n为正奇数时,xn+yn能被x+y整除”,第二步归纳假设应写成( )
A.假设n=2k+1(k∈N*)正确,再推n=2k+3正确
B.假设n=2k-1(k∈N*)正确,再推n=2k+1正确
C.假设n=k(k∈N*)正确,再推n=k+1正确
D.假设n=k(k≥1)正确,再推n=k+2正确
二、填空题(每小题5分,共10分)
5.用数学归纳法证明1+2+3+…+n2=时,当n=k+1时左端在n=k时的左端加上________.
6.利用数学归纳法证明“(n+1)(n+2)…(n+n)=2n×1×3×…×(2n-1),n∈N*”时,从“n=k”变到“n=k+1”时,左边应增乘的因式是________.
三、解答题(共70分)
7.(15分)对于n∈N*,用数学归纳法证明:
1·n+2·(n-1)+3·(n-2)+…+(n-1)·2+n·1=n(n+1)(n+2).
8.(20分)已知正项数列{an}和{bn}中,a1=a(0<a<1),b1=1-a.当n≥2时,an=an-1bn,bn=.
(1)证明:对任意n∈N*,有an+bn=1;
(2)求数列{an}的通项公式.
9.(20分)数列{an}满足Sn=2n-an(n∈N*).
(1)计算a1,a2,a3,a4,并由此猜想通项公式an;
(2)用数学归纳法证明(1)中的猜想.
[来源:学.科.网Z.X.X.K]
10.(15分)已知点Pn(an,bn)满足an+1=an·bn+1,bn+1=(n∈N*)且点P1的坐标为(1,-1).
(1)求过点P1,P2的直线l的方程;
(2)试用数学归纳法证明:对于n∈N*,点Pn都在(1)中的直线l上.
[来源:Zxxk.Com]
[来源:学科网]
2.3 数学归纳法 答题纸
得分:
一、选择题
题号