4.1.1 条件概率--2022-2023学年高二数学人教B版(2019)选择性必修第二册同步课时训练 一、概念练****1.某单位派出甲、乙等5名志愿者进入富强等4个社区宣讲十九届六中全会精神,每名志愿者只去1个社区,每个社区至少有1名志愿者,则在甲去富强社区宣讲的条件下,乙不去富强社区宣讲的概率为( ) A. B. C. D. 2.甲、乙二人争夺一场围棋比赛的冠军,比赛为三局两胜制,甲在每局比赛中获胜的概率均为,且各局比赛结果相互独立,则在甲获得冠军的情况下,比赛进行了三局的概率为( ) A. B. C. D. 3.根据历年的气象数据,某市5月份发生中度雾霾的概率为0.25,刮四级以上大风的概率为0.4,既发生中度雾霾又刮四级以上大风的概率为0.2.则在发生中度雾霾的情况下,刮四级以上大风的概率为( ) A.0.8 B.0.625 C.0.5 D.0.1 4.用1,2,3,4排成无重复数字的四位数,在数字1排在个位的条件下,该四位数大于3000的概率为( ) A. B. C. D. 5.设两个独立事件A和B都不发生的概率为,A发生B不发生的概率与B发生A不发生的概率相同,则事件A发生的概率是( )。 A. B. C. D. 二、能力提升 6.在市场上供应的灯泡中,甲厂产品占70%,乙厂产品占30%,甲厂产品的合格率是95%,乙厂产品的合格率是80%,则从市场上买到一个甲厂的合格灯泡的概率是( ) A.0.665 B.0.564 C.0.245 D.0.285 7.从混有5张假钞的20张百元钞票中依次抽出2张,将第1张放到验钞机上检验发现是假钞,则第2张也是假钞的概率为( ) A. B. C. D. (多选) 8.下列说法正确的是( ) A. B. C. D. 9.下列说法正确的是( ) A.设随机变量X服从二项分布,则 B.已知随机变量X服从正态分布,且,则 C.甲、乙、丙三人均准备在3个旅游景点中任选一处去游玩,则在至少有1个景点未被选择的条件下,恰有2个景点未被选择的概率是 D. 10.甲罐中有5个红球,2个白球和3个黑球,乙罐中有4个红球,3个白球和3个黑球,先从甲罐中随机取出一球放入乙罐,分别用事件和表示从甲罐中取出的球是红球,白球和黑球;再从乙罐中随机取出一球,用事件B表示从乙罐中取出的球是红球,则下列结论正确的是( ) A. B. C.事件B与事件相互独立 D.是两两互斥的事件 11.某班有6名班干部,其中男生4人,女生2人.从中任选3名班干部参加学校的义务劳动.设“男生甲被选中”为事件A,“女生乙被选中”为事件B,则_____________. 12.高二某班共有60名学生,其中女生有20名,三好学生占全班人数的,而且三好学生中女生占一半.现在从该班任选一名学生参加某一座谈会,则在已知没有选上女生的条件下,选上的是三好学生的概率为______________. 13.高二某班共有60名学生,其中女生有20名,三好学生占全班人数的,而且三好学生中女生占一半.现在从该班任选一名学生参加某一座谈会,则在已知没有选上女生的条件下,选上的是三好学生的概率为______________. 14.一医疗团队为研究某地的一种地方性疾