下载此文档

2022年全国统一高考数学试卷(理科)(新课标ⅱ)(含解析版)2.doc


高中 高二 上学期 数学 人教版

1340阅读234下载33页532 KB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
2022年全国统一高考数学试卷(理科)(新课标ⅱ)(含解析版)2.doc
文档介绍:
2013年全国统一高考数学试卷(理科)(新课标Ⅱ)
一、选择题:本大题共12小题.每小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合题目要求的.
1.(5分)已知集合M={x|(x﹣1)2<4,x∈R},N={﹣1,0,1,2,3},则M∩N=(  )
A.{0,1,2} B.{﹣1,0,1,2}
C.{﹣1,0,2,3} D.{0,1,2,3}
2.(5分)设复数z满足(1﹣i)z=2i,则z=(  )
A.﹣1+i B.﹣1﹣i C.1+i D.1﹣i
3.(5分)等比数列{an}的前n项和为Sn,已知S3=a2+10a1,a5=9,则a1=(  )
A. B. C. D.
4.(5分)已知m,n为异面直线,m⊥平面α,n⊥平面β.直线l满足l⊥m,l⊥n,l⊄α,l⊄β,则(  )
A.α∥β且l∥α B.α⊥β且l⊥β
C.α与β相交,且交线垂直于l D.α与β相交,且交线平行于l
5.(5分)已知(1+ax)(1+x)5的展开式中x2的系数为5,则a=(  )
A.﹣4 B.﹣3
C.﹣2 D.﹣1
6.(5分)执行右面的程序框图,如果输入的N=10,那么输出的S=(  )
A.
B.
C.
D.
7.(5分)一个四面体的顶点在空间直角坐标系O﹣xyz中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx平面为投影面,则得到正视图可以为(  )
A. B.
C. D.
8.(5分)设a=log36,b=log510,c=log714,则(  )
A.c>b>a B.b>c>a C.a>c>b D.a>b>c
9.(5分)已知a>0,实数x,y满足:,若z=2x+y的最小值为1,则a=(  )
A.2 B.1 C. D.
10.(5分)已知函数f(x)=x3+ax2+bx+c,下列结论中错误的是(  )
A.∃x0∈R,f(x0)=0
B.函数y=f(x)的图象是中心对称图形
C.若x0是f(x)的极小值点,则f(x)在区间(﹣∞,x0)单调递减
D.若x0是f(x)的极值点,则f′(x0)=0
11.(5分)设抛物线C:y2=2px(p>0)的焦点为F,点M在C上,|MF|=5,若以MF为直径的圆过点(0,2),则C的方程为(  )
A.y2=4x或y2=8x B.y2=2x或y2=8x
C.y2=4x或y2=16x D.y2=2x或y2=16x
12.(5分)已知点A(﹣1,0),B(1,0),C(0,1),直线y=ax+b(a>0)将△ABC分割为面积相等的两部分,则b的取值范围是(  )
A.(0,1) B. C. D.
 
二、填空题:本大题共4小题,每小题5分.
13.(5分)已知正方形ABCD的边长为2,E为CD的中点,则•=   .
14.(5分)从n个正整数1,2,…,n中任意取出两个不同的数,若取出的两数之和等于5的概率为,则n=   .
15.(5分)设θ为第二象限角,若tan(θ+)=,则sinθ+cosθ=   .
16.(5分)等差数列{an}的前n项和为Sn,已知S10=0,S15=25,则nSn的最小值为   .
 
三.解答题:解答应写出文字说明,证明过程或演算步骤:
17.(12分)△ABC在内角A、B、C的对边分别为a,b,c,已知a=bcosC+csinB.
(Ⅰ)求B;
(Ⅱ)若b=2,求△ABC面积的最大值.
18.(12分)如图,直棱柱ABC﹣A1B1C1中,D,E分别是AB,BB1的中点,AA1=AC=CB=AB.
(Ⅰ)证明:BC1∥平面A1CD
(Ⅱ)求二面角D﹣A1C﹣E的正弦值.
19.(12分)经销商经销某种农产品,在一个销售季度内,每售出1t该产品获利润500元,未售出的产品,每1t亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直方图,如图所示.经销商为下一个销售季度购进了130t该农产品.以x(单位:t,100≤x≤150)表示下一个销售季度内的市场需求量,T(单位:元)表示下一个销售季度内经销该农产品的利润.
(Ⅰ)将T表示为x的函数;
(Ⅱ)根据直方图估计利润T不少于57000元的概率;
(Ⅲ)在直方图的需求量分组中,以各组的区间中点值代表该组的各个值,并以需求量落入该区间的频率作为需求量取该区间中点值的概率(例如:若x∈[100,110))则取x=105,且x=105的概
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档