两个计数原理及其简单应用
[A组 学业达标]
1.从A地到B地,可乘汽车、火车、轮船三种交通工具,如果一天内汽车发3次,火车发4次,轮船发2次,那么一天内乘坐这三种交通工具的不同走法为( )
A.1+1+1=3 B.3+4+2=9
C.3×4×2=24 D.以上都不对
解析:分三类:第一类,乘汽车,从3次中选1次有3种走法;第二类,乘火车,从4次中选1次有4种走法;第三类乘轮船,从2次中选1次有2种走法.所以,共有3+4+2=9(种)不同的走法.
答案:B
2.现有3名老师、8名男学生和5名女学生共16人.若需1名老师和1名学生参加评选会议,则不同的选法种数为( )
A.39 B.24
C.15 D.16
解析:先从3名老师中任选1名,有3种选法,再从13名学生中任选1名,有13种选法.由分步乘法计数原理知,不同的选法种数为3×13=39.
答案:A
3.现有4件不同款式的上衣和3条不同颜色的长裤,如果一条长裤与一件上衣配成一套,则不同的配法种数为( )
A.7 B.12
C.64 D.81
解析:分两步:第一步选上衣,有4种不同的选法.第二步选长裤,有3种不同的选法.故共有4×3=12种不同的配法.故选B.
答案:B
4.已知x∈{2,3,7},y∈{-31,-24,4},则(x,y)可表示不同的点的个数是( )
A.1 B.3
C.6 D.9
解析:这件事可分为两步完成:第一步,在集合{2,3,7}中任取一个值x有3种方法;第二步,在集合{-31,-24,4}中任取一个值y有3种方法.根据分步乘法计数原理知,有3×3=9个不同的点.
答案:D
5.某班小张等4位同学报名参加A,B,C三个课外活动小组,每位同学限报其中一个小组,且小张不能报A小组,则不同的报名方法有( )
A.27种 B.36种
C.54种 D.81种
解析:小张的报名方法有2种,其他3位同学各有3种,所以由分步乘法计数原理知,共有2×3×3×3=54(种)不同的报名方法,选C.
答案:C
6.从集合{0,1,2,3,4,5,6}中任取两个互不相等的数a,b组成复数a+bi,其中虚数有________个.
解析:第一步取b的数,有6种方法,第二步取a的数,也有6种方法,根据分步乘法计数原理,共有6×6=36(个).
答案:36
7.4名学生参加跳高、跳远、游泳比赛,4人都来争夺这三项冠军,则冠军分配的种数有________.
解析:本题中要完成的一件事:“将比赛的各项冠军逐一分配给4名参赛学生”.∵跳高冠军的分配有4种不同的方法,跳远冠军的分配有4种不同的方法,游泳冠军的分配有4种不同的方法,∴根据分步乘法计数原理,冠军的分配方法有4×4×4=64(种).
答案:64
8.从-1,0,1,2这四个数中选三个不同的数作为函数f(x)=ax2+bx+c的各项的系数,可组成不同的二次函数共有________个,其中不同的偶函数共有________个.(用数字作答)
解析:一个二次函数对应着a,b,c(a≠0)的一组取值,a的取法有3种,b的取法有3种,c的取法有2种,由分步乘法计数原理知,共有二次函数的个数为3×3×2=18.其中不同的偶函数的个数为3