下载此文档

人教考向36圆锥曲线中的定点、定值问题(重点)-备战2023年高考数学一轮复习考点微专题(全国通用)(解析版).docx


高中 高一 上学期 数学 人教版

1340阅读234下载34页1.66 MB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
人教考向36圆锥曲线中的定点、定值问题(重点)-备战2023年高考数学一轮复习考点微专题(全国通用)(解析版).docx
文档介绍:
考向36 圆锥曲线中的定点、定值问题
(2022·全国乙理T20文T21)已知椭圆E的中心为坐标原点,对称轴为x轴、y轴,且过两点.
(1)求E的方程;
(2)设过点的直线交E于M,N两点,过M且平行于x轴的直线与线段AB交于点T,点H满足.证明:直线HN过定点.
【答案】(1) ;(2)
【解析】(1)设椭圆E的方程为,过,
则,解得,,所以椭圆E的方程为:.
(2),所以,
①若过点的直线斜率不存在,直线.代入,
可得,,代入AB方程,可得
,由得到.求得HN方程:
,过点.
②若过点的直线斜率存在,设.
联立得,
可得,,

联立可得
可求得此时,
将,代入整理得,
将代入,得
显然成立,
综上,可得直线HN过定点
【点睛】求定点、定值问题常见的方法有两种:
①从特殊入手,求出定值,再证明这个值与变量无关;
②直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.
1.求解定点问题常用的方法
(1)特殊推理法:先从特殊情况入手,求出定点,再证明定点与变量无关.
(2)直接推理法:①选择一个参数建立直线系方程,一般将题目中给出的曲线方程(包含直线方程)中的常量当成变量,将变量x,y当成常量,将原方程转化为kf(x,y)+g(x,y)=0的形式(k是原方程中的常量);②根据直线过定点时与参数没有关系(即直线系方程对任意参数都成立),得到方程组③以②中方程组的解为坐标的点就是直线所过的定点,若定点具备一定的限制条件,可以特殊解决.
圆锥曲线中的定值问题的常见类型及解题策略
(1)求代数式为定值:依题意设条件,得出与代数式参数有关的等式,代入代数式,化简即可得出定值;
(2)求点到直线的距离为定值:利用点到直线的距离公式得出距离的解析式,再利用题设条件化简、变形求得;
(3)求某线段长度为定值:利用长度公式求得解析式,再依据条件对解析式进行化简、变形即可求得.
1.已知椭圆+y2=1,直线l过点M(1,0)且与椭圆C相交于A,B两点.过点A作直线x=3的垂线,垂足为D.则直线BD过x轴上的定点坐标为________.
【答案】(2,0)
【解析】(1)当直线l斜率不存在时,直线l的方程为x=1,
不妨设A,B,D,
此时直线BD的方程为y=(x-2),所以直线BD过点(2,0).
(2)当直线l的斜率存在时,设A(x1,y1),B(x2,y2),直线AB为y=k(x-1),D(3,y1),
由得(1+3k2)x2-6k2x+3k2-3=0,
所以x1+x2=,x1x2=.
直线BD:y-y1=(x-3),只需证明直线BD过点(2,0)即可,
令y=0,得x-3=-,
所以x===,
即证=2,即证2(x2+x1)-x1x2=3,
可得2(x2+x1)-x1x2=-==3,所以直线BD过点(2,0),
综上所述,直线BD恒过x轴上的定点(2,0).
2.已知抛物线C:y2=4x的焦点为F,准线l与x轴交于点M,点P在抛物线上,直线PF与抛物线交于另一点A,设直线MP,MA的斜率分别为k1,k2,则k1+k2的值为________.
【答案】 0
【解析】设过F的直线x=my+1交抛物线于P(x1,y1),A(x2,y2),M(-1,0),
联立方程组得y2-4my-4=0,
于是有
∴k1+k2=+=,
又y1x2+y2x1+y1+y2=·y1y2(y1+y2)+(y1+y2)=·(-4)·4m+4m=0,∴k1+k2=0.
3.已知A,B分别为椭圆E:+y2=1(a>1)的左、右顶点,G为E的上顶点,·=8.P为直线x=6上的动点,PA与E的另一交点为C,PB与E的另一交点为D.
(1)求E的方程;
(2)证明:直线CD过定点.
【答案】(1)+y2=1;(2)见解析
【解析】(1)由题设得A(-a,0),B(a,0),G(0,1).则=(a,1),=(a,-1).
由·=8得a2-1=8,即a=3.所以E的方程为+y2=1.
(2)证明:设C(x1,y1),D(x2,y2),P(6,t).
若t≠0,设直线CD的方程为x=my+n,由题意可知-3<n<3.
由于直线PA的方程为y=(x+3),所以y1=(x1+3).
直线PB的方程为y=(x-3),所以y2=(x2-3).
可得3y1(x2-3)=y2(x1+3).①
由于+y=1,故y=-,②
由①②可得27y1y2=-(x1+3)(x2+3),
即(27+m2)y1y2+m(n+3)(y1+y2)+(n+3)2=0.③
将x=my+n代入+y2=1,
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档