下载此文档

人教版专题5-1 均值不等式及其应用归类(讲+练)-2023年高考数学二轮复习讲练测(全国通用)(解析版).docx


高中 高二 上学期 数学 人教版

1340阅读234下载31页1.84 MB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
人教版专题5-1 均值不等式及其应用归类(讲+练)-2023年高考数学二轮复习讲练测(全国通用)(解析版).docx
文档介绍:
专题5-1 均值不等式及其应用归类
目录
讲高考 1
题型全归纳 4
【题型一】公式应用及限制条件 4
【题型二】构造“公式型” 6
【题型三】“1”的代换 7
【题型四】“积”与“和”混合型 8
【题型五】构造分母代换型 10
【题型七】分离常数消去型 11
【题型八】消去型 13
【题型九】多次均值 15
【题型十】多元均值 16
【题型十一】权方和不等式 18
【题型十二】万能“k”法 20
【题型十三】整体换元 21
【题型十四】均值应用:恒成立 22
专项训练 24
讲高考
1.(2022·全国·统考高考真题)已知,则(    )
A. B. C. D.
【答案】A
【分析】法一:根据指对互化以及对数函数的单调性即可知,再利用基本不等式,换底公式可得,,然后由指数函数的单调性即可解出.
【详解】[方法一]:(指对数函数性质)
由可得,而,所以,即,所以.
又,所以,即,
所以.综上,.
[方法二]:【最优解】(构造函数)
由,可得.
根据的形式构造函数 ,则,
令,解得 ,由 知 .
在 上单调递增,所以 ,即 ,
又因为 ,所以 .
故选:A.
【整体点评】法一:通过基本不等式和换底公式以及对数函数的单调性比较,方法直接常用,属于通性通法;
法二:利用的形式构造函数,根据函数的单调性得出大小关系,简单明了,是该题的最优解.
2.(2021·全国·统考高考真题)下列函数中最小值为4的是(    )
A. B.
C. D.
【答案】C
【分析】根据二次函数的性质可判断选项不符合题意,再根据基本不等式“一正二定三相等”,即可得出不符合题意,符合题意.
【详解】对于A,,当且仅当时取等号,所以其最小值为,A不符合题意;
对于B,因为,,当且仅当时取等号,等号取不到,所以其最小值不为,B不符合题意;
对于C,因为函数定义域为,而,,当且仅当,即时取等号,所以其最小值为,C符合题意;
对于D,,函数定义域为,而且,如当,,D不符合题意.
故选:C.
【点睛】本题解题关键是理解基本不等式的使用条件,明确“一正二定三相等”的意义,再结合有关函数的性质即可解出.
3.(2021·全国·统考高考真题)已知,是椭圆:的两个焦点,点在上,则的最大值为(    )
A.13 B.12 C.9 D.6
【答案】C
【分析】本题通过利用椭圆定义得到,借助基本不等式即可得到答案.
【详解】由题,,则,
所以(当且仅当时,等号成立).
故选:C.
4.(陕西·高考真题)已知不等式对任意正实数x,y恒成立,则正实数a的最小值为(    )
A.2 B.4 C.6 D.8
【答案】B
【解析】由,然后利用基本不等式求最小值,利用最小值大于等于9,建立不等式,解之即可.
【详解】由已知可得若题中不等式恒成立,则只要的最小值大于等于9即可,


当且仅当即时等号成立,,
或舍去,即
所以正实数a的最小值为4.
故选:B.
【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:
(1)“一正二定三相等”“一正”就是各项必须为正数;
(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;
(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方,这时改用勾型函数的单调性求最值.
5.(·天津·高考真题)已知函数设,若关于x的不等式在R上恒成立,则a的取值范围是
A. B. C. D.
【答案】A
【详解】不等式为(*),
当时,(*)式即为,,
又(时取等号),
(时取等号),
所以,
当时,(*)式为,,
又(当时取等号),
(当时取等号),
所以,
综上.故选A.
【考点】不等式、恒成立问题
【名师点睛】首先满足转化为去解决,由于涉及分段函数问题要遵循分段处理原则,分别对的两种不同情况进行讨论,针对每种情况根据的范围,利用极端原理,求出对应的的范围.
题型全归纳
综述
1.基本不等式:≤;
(1)基本不等式成立的条件:a>0,b>0;
(2)等号成立的条件:当且仅当a=b.
(3)基本不等式的变形:①a+b≥2,常用于求和的最小值;②ab≤2,常用于求积的最大值;
2.常用不等式:
(1)重要不等式:a2+b2≥ 2ab(a,b∈R);
(2)重要不等式链:≥ ≥≥;
【题型一】公式应用及限制条件
【讲题型】
例题1
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档