下载此文档

人教版高中数学第1讲 绝对值不等式(1).doc


高中 高二 上学期 数学 人教版

1340阅读234下载4页424 KB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
人教版高中数学第1讲 绝对值不等式(1).doc
文档介绍:
第1讲 绝对值不等式
1.设函数f(x)=|2x+1|-|x-4|.
(1)解不等式f(x)>2;
(2)求函数y=f(x)的最小值.
解 (1)法一 令2x+1=0,x-4=0分别得x=-,x=4.
原不等式可化为:
或或
即或或
∴x<-7或x>.
∴原不等式的解集为.
法二 f(x)=|2x+1|-|x-4|=
画出f(x)的图象,如图所示.
求得y=2与f(x)图象的交点为(-7,2),.
由图象知f(x)>2的解集为.
(2)由(1)的法二图象知:当x=-时,
知:f(x)min=-.
2.(2017·长沙一模)设α,β,γ均为实数.
(1)证明:|cos(α+β)|≤|cos α|+|sin β|,|sin(α+β)|≤|cos α|+|cos β|;
(2)若α+β+γ=0,证明:|cos α|+|cos β|+|cos γ|≥1.
证明 (1)|cos(α+β)|=|cos αcos β-sin αsin β|≤
|cos αcos β|+|sin αsin β|≤|cos α|+|sin β|;
|sin(α+β)|=|sin αcos β+cos αsin β|≤|sin αcos β|+
|cos αsin β|≤|cos α|+|cos β|.
(2)由(1)知,|cos[α+(β+γ)]|≤|cos α|+|sin(β+γ)|≤|cos α|+|cos β|+
|cos γ|,
而α+β+γ=0,故|cos α|+|cos β|+|cos γ|≥1.
3.(2016·镇江模拟)已知a和b是任意非零实数.
(1)求的最小值;
(2)若不等式|2a+b|+|2a-b|≥|a|(|2+x|+|2-x|)恒成立,求实数x的取值范围.
解 (1)∵≥==4,∴的最小值为4.
(2)若不等式|2a+b|+|2a-b|≥|a|(|2+x|+|2-x|)恒成立,即|2+x|+|2-x|≤恒成立,
故|2+x|+|2-x|≤.
由(1)可知,的最小值为4.
∴x的取值范围即为不等式|2+x|+|2-x|≤4的解集.
解不等式得-2≤x≤2.
故实数x的取值范围为[-2,2].
4.(2017·广州二测)已知函数f(x)=log2(|x+1|+|x-2|-a).
(1)当a=7时,求函数f(x)的定义域;
(2)若关于x的不等式f(x)≥3的解集是R,求实数a的最大值.
解 (1)由题设知|x+1|+|x-2|>7,
①当x>2时,得x+1+x-2>7,解得x>4.
②当-1≤x≤2时,得x+1+2-x>7,无解.
③当x<-1时,得-x-1-x+2>7,解得x<-3.
∴函数f(x)的定义域为(-∞,-3)∪(4,+∞).
(2)不等式f(x)≥3,
即|x+1|+|x-2|≥a+8,
∵当x∈R时,
恒有|x+1|+|x-2|≥|(x+1)-(x-2)|=3,
又不等式|x+1|+|x-2|≥a+8的解集是R,
∴a+8≤3,即a≤-5,
∴a的最大值为-5.
5.设函数f(x)=2|x-1|+x-1,g(x)=16x2-8x+1.记f(x)≤1的解集为M,g(x)≤4的解集为N.
(1)求M;
(2)当x∈(M
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档