下载此文档

人教版高中数学第3讲 数学归纳法及其应用.doc


高中 高二 上学期 数学 人教版

1340阅读234下载6页415 KB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
人教版高中数学第3讲 数学归纳法及其应用.doc
文档介绍:
第3讲 数学归纳法及其应用
一、选择题
1.用数学归纳法证明“2n>2n+1对于n≥n0的正整数n都成立”时,第一步证明中的起始值n0应取(  )
A.2 B.3 C.5 D.6
解析 ∵n=1时,21=2,2×1+1=3,2n>2n+1不成立;
n=2时,22=4,2×2+1=5,2n>2n+1不成立;
n=3时,23=8,2×3+1=7,2n>2n+1成立.
∴n的第一个取值n0=3.
答案 B
2.某个命题与正整数有关,如果当n=k(k∈N*)时该命题成立,那么可以推出n=k+1时该命题也成立.现已知n=5时该命题成立,那么(  )
A.n=4时该命题成立
B.n=4时该命题不成立
C.n≥5,n∈N*时该命题都成立
D.可能n取某个大于5的整数时该命题不成立
解析 显然A,B错误,由数学归纳法原理知C正确,D错.
答案 C
3.利用数学归纳法证明不等式“1+++…+>(n≥2,n∈N*)”的过程中,由“n=k”变到“n=k+1”时,左边增加了(  )
A.1项 B.k项 C.2k-1项 D.2k项
解析 左边增加的项为++…+共2k项,故选D.
答案 D
4.对于不等式<n+1(n∈N*),某同学用数学归纳法证明的过程如下:
(1)当n=1时,<1+1,不等式成立.
(2)假设当n=k(k∈N*)时,不等式<k+1成立,当n=k+1时,=<==(k+1)+1.
∴当n=k+1时,不等式成立,则上述证法(  )
A.过程全部正确
B.n=1验得不正确
C.归纳假设不正确
D.从n=k到n=k+1的推理不正确
解析 在n=k+1时,没有应用n=k时的假设,不是数学归纳法.
答案 D
5.用数学归纳法证明1+2+3+…+n2=,则当n=k+1时左端应在n=k的基础上加上(  )
A.k2+1
B.(k+1)2
C.
D.(k2+1)+(k2+2)+…+(k+1)2
解析 当n=k时,左端=1+2+3+…+k2.
当n=k+1时,左端=1+2+3+…+k2+(k2+1)+(k2+2)+…+(k+1)2,
故当n=k+1时,左端应在n=k的基础上加上(k2+1)+(k2+2)+…+(k+1)2.故选D.
答案 D
二、填空题
6.设Sn=1++++…+,则Sn+1-Sn=________.
解析 ∵Sn+1=1++…+++…+,
Sn=1++++…+.
∴Sn+1-Sn=+++…+.
答案 +++…+
7.数列{an}中,已知a1=2,an+1=(n∈N*),依次计算出a2,a3,a4,猜想an=________.
解析 a1=2,a2==,a3==,a4==.由此,猜想an是以分子为2,分母是以首项为1,公差为6的等差数列.∴an=.
答案 
8.凸n多边形有f(n)条对角线.则凸(n+1)边形的对角线的条数f(n+1)与f(n)的递推关系式为________.
解析 f(n+1)=f(n)+(n-2)+1=f(n)+n-1.
答案 f(n+1)=f(n)+n-1
三、解答题
9.用数学归纳法证明:1+++…+<2-(n∈N*,n≥2).
证明 (1)当n=2时,1+=<2-=,命题成立.
(2)
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档