下载此文档

专题04 立体几何-2021年高考真题和模拟题数学(文)分项汇编(人教版)(解析版).doc


高中 高二 上学期 数学 人教版

1340阅读234下载29页3.13 MB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
专题04 立体几何-2021年高考真题和模拟题数学(文)分项汇编(人教版)(解析版).doc
文档介绍:
专题04 立体几何
1.(2021·全国高考真题(文))在一个正方体中,过顶点A的三条棱的中点分别为E,F,G.该正方体截去三棱锥后,所得多面体的三视图中,正视图如图所示,则相应的侧视图是( )
A. B. C. D.
【答案】D
【分析】根据题意及题目所给的正视图还原出几何体的直观图,结合直观图进行判断.
【详解】由题意及正视图可得几何体的直观图,如图所示,
所以其侧视图为,故选D.
2.(2021·全国高考真题(理))在正方体中,P为的中点,则直线与所成的角为( )
A. B. C. D.
【答案】D
【分析】平移直线至,将直线与所成的角转化为与所成的角,解三角形即可.
【详解】
如图,连接,因为∥,
所以或其补角为直线与所成的角,
因为平面,所以,又,,
所以平面,所以,
设正方体棱长为2,则,
,所以.
故选D.
3.(2021·浙江高考真题)某几何体的三视图如图所示,则该几何体的体积是( )
A. B.3 C. D.
【答案】A
【分析】根据三视图可得如图所示的几何体,根据棱柱的体积公式可求其体积.
【详解】几何体为如图所示的四棱柱,其高为1,底面为等腰梯形,
该等腰梯形的上底为,下底为,腰长为1,故梯形的高为,
故,
故选:A.
4.(2021·北京高考真题)某四面体的三视图如图所示,该四面体的表面积为( )
A. B.4 C. D.2
【答案】A
【分析】根据三视图可得如图所示的几何体(三棱锥),根据三视图中的数据可计算该几何体的表面积.
【详解】根据三视图可得如图所示的几何体-正三棱锥,
其侧面为等腰直角三角形,底面等边三角形,
由三视图可得该正三棱锥的侧棱长为1,
故其表面积为,
故选:A.
5.(2021·北京高考真题)定义:24小时内降水在平地上积水厚度()来判断降雨程度.其中小雨(),中雨(),大雨(),暴雨(),小明用一个圆锥形容器接了24小时的雨水,如图,则这天降雨属于哪个等级( )
A.小雨 B.中雨 C.大雨 D.暴雨
【答案】B
【分析】计算出圆锥体积,除以圆面的面积即可得降雨量,即可得解.
【详解】由题意,一个半径为的圆面内的降雨充满一个底面半径为,高为的圆锥,
所以积水厚度,属于中雨.
故选:B.
6.(2021·浙江高考真题)如图已知正方体,M,N分别是,的中点,则( )
A.直线与直线垂直,直线平面
B.直线与直线平行,直线平面
C.直线与直线相交,直线平面
D.直线与直线异面,直线平面
【答案】A
【分析】由正方体间的垂直、平行关系,可证平面,即可得出结论.
【详解】
连,在正方体中,
M是的中点,所以为中点,
又N是的中点,所以,
平面平面,
所以平面.
因为不垂直,所以不垂直
则不垂直平面,所以选项B,D不正确;
在正方体中,,
平面,所以,
,所以平面,
平面,所以,
且直线是异面直线,
所以选项B错误,选项A正确.
故选:A.
【点睛】关键点点睛:熟练掌握正方体中的垂直、平行关系是解题的关键,如两条棱平行或垂直,同一个面对角线互相垂直,正方体的对角线与面的对角线是相交但不垂直或异面垂直关系.
7.(2021·全国高考真题(文))已知一个圆锥的底面半径为6,其体积为则该圆锥的侧面积为________.
【答案】
【分析】利用体积公式求出圆锥的高,进一步求出母线长,最终利用侧面积公式求出答案.
【详解】∵


∴.
故答案为:.
8.(2021·全国高考真题(文))以图①为正视图,在图②③④⑤中选两个分别作为侧视图和俯视图,组成某三棱锥的三视图,则所选侧视图和俯视图的编号依次为_________(写出符合要求的一组答案即可).
【答案】③④(答案不唯一)
【分析】由题意结合所给的图形确定一组三视图的组合即可.
【详解】选择侧视图为③,俯视图为④,
如图所示,长方体中,,
分别为棱的中点,
则正视图①,侧视图③,俯视图④对应的几何体为三棱锥.
故答案为:③④.
【点睛】三视图问题解决的关键之处是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系.
9.(2021·全国高考真题(文))如图,四棱锥的底面是矩形,底面,M为的中点,且.
(1)证明:平面平面;
(2)若,求四棱锥的体积.
【答案】(1)证明见解析;(2).
【分析】(1)由底面可得,又,由线面垂直的判定定理可得平面,再根据面面垂直的判定定理即可证出平面平面;
(2)由(1
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档