下载此文档

人教高中数学专题24 高考排列组合的技巧 分层训练 (解析版).docx


高中 高二 上学期 数学 人教版

1340阅读234下载29页601 KB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
人教高中数学专题24 高考排列组合的技巧 分层训练 (解析版).docx
文档介绍:
答案第1页,共20页
专题24 高考排列组合的技巧
【练基础】
一、单选题
1.(2023春·浙江杭州·高三浙江省杭州第二中学校考阶段练****2022年10月22日,中国共产党第二十次全国代表大会胜利闭幕.某班举行了以“礼赞二十大、奋进新征程”为主题的联欢晚会,原定的5个学生节目已排成节目单,开演前又临时增加了两个教师节目,如果将这两个教师节目插入到原节目单中,则这两个教师节目相邻的概率为(    )
A. B. C. D.
【答案】D
【分析】先插入第一个节目,再插入第二个节目,再按照分步乘法计数原理分别计算插入的情况数量及这两个教师节目恰好相邻的情况数量,再应用古典概率公式求概率即可.
【详解】由题意可知,先将第一个教师节目插入到原节目单中,有6种插入法,
再将第二个教师节目插入到这6个节目中,有7种插入法,
故将这两个教师节目插入到原节目单中,共有(种)情况,
其中这两个教师节目恰好相邻的情况有(种),所以所求概率为.
故选:D.
2.(2023·辽宁沈阳·统考一模)甲、乙、丙、丁、戊、己6人站成一排拍合照,要求甲必须站在中间两个位置之一,且乙、丙2人相邻,则不同的排队方法共有(    )
A.24种 B.48种 C.72种 D.96种
【答案】C
【分析】先安排甲,可从中间两个位置中任选一个,再安排乙丙2人,可分为两类:安排在甲有2个位置的一侧;安排在甲有3个位置的一侧,最后安排其余3人,综上可得答案.
【详解】先安排甲,可从中间两个位置中任选一个安排有种方法,而甲站好后一边有2个位置,另一边有3个位置,再安排乙丙2人,因乙、丙2人相邻,可分为两类:安排在甲有2个位置的一侧有种方法;安排在甲有3个位置的一侧有种方法,最后安排其余3人有种方法,综上,不同的排队方法有:种.
故选:C.
3.(2023·内蒙古·校联考模拟预测)如图,这是第24届国际数学家大会会标的大致图案,它是以我国古代数学家赵爽的弦图为基础设计的.现给这5个区域涂色,要求相邻的区域不能涂同一种颜色,且每个区域只涂一种颜色.若有5种颜色可供选择,则恰用4种颜色的概率是(    )
答案第1页,共20页
A. B. C. D.
【答案】C
【分析】先求用5种颜色任意涂色的方法总数,再求恰好用完4种颜色涂色的方法总数,最后按照古典概型求概率即可.
【详解】若按要求用5种颜色任意涂色:
先涂中间块,有5种选择,再涂上块,有4种选择.
再涂下块,若下块与上块涂相同颜色,则左块和右块均有3种选择;
若下块与上块涂不同颜色,则下块有3种选择,左块和右块均有2种选择.
则共有种方法.
若恰只用其中4种颜色涂色:
先在5种颜色中任选4种颜色,有种选择.
先涂中间块,有4种选择,再涂上块,有3种选择.
再涂下块,若下块与上块涂相同颜色,则左块有2种选择,
为恰好用尽4种颜色,则右块只有1种选择;
若下块与上块涂不同颜色,则下块有2种选择,左块和右块均只有1种选择.
则共有种方法,
故恰用4种颜色的概率是.
故选:C.
4.(2023·四川·校联考模拟预测)某中学举行歌唱比赛,要求甲、乙、丙三位参赛选手从《难却》《兰亭序》《许愿》等首歌曲中任意选首作为参赛歌曲,其中甲和乙都没有选《难却》,丙选了《兰亭序》,但他不会选《许愿》,则甲、乙、丙三位参赛选手的参赛歌曲的选法共有(    )
A.种 B.种 C.种 D.种
【答案】C
【分析】甲和乙都是从剩余5首歌曲中选两个,丙是从剩余4首歌曲中选1个,求组合数的乘积即可.
【详解】依题意可知,甲、乙需要从剩余5首歌曲中选两个,丙是从剩余4首歌曲中选1个,
答案第1页,共20页
甲、乙、丙三位参赛选手的参赛歌曲的选法共有种
故选:C.
5.(2023·贵州贵阳·统考一模)“一笔画”游戏是指要求经过所有路线且节点可以多次经过,但连接节点间的路线不能重复画的游戏,下图是某一局“一笔画”游戏的图形,其中为节点,若研究发现本局游戏只能以为起点为终点或者以为起点为终点完成,那么完成该图“一笔画”的方法数为(    )
A.种 B.种 C.种 D.种
【答案】C
【分析】采用分步乘法可计算得到以为起点,为终点的方法数,再利用分类加法计数原理求得结果.
【详解】以为起点时,三条路线依次连接即可到达点,共有种选择;自连接到时,在右侧可顺时针连接或逆时针连接,共有种选择,
以为起点,为终点时,共有种方法;
同理可知:以为起点,为终点时,共有种方法;
完成该图“一笔画”的方法数为种.
故选:C.
6.(2023·浙江·校联考模拟预测)甲、乙、丙3人去食堂用餐,每个人从这5种菜中任意选用2种,则菜有2人选用、菜有1
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档