下载此文档

人教高中数学压轴题突破练1.docx


高中 高一 上学期 数学 人教版

1340阅读234下载5页24 KB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
人教高中数学压轴题突破练1.docx
文档介绍:
压轴题突破练1
1.(2022·新高考全国Ⅱ)已知双曲线C:-=1(a>0,b>0)的右焦点为F(2,0),渐近线方程为y=±x.
(1)求C的方程;
(2)过F的直线与C的两条渐近线分别交于A,B两点,点P(x1,y1),Q(x2,y2)在C上,且x1>x2>0,y1>0.过P且斜率为-的直线与过Q且斜率为的直线交于点M.从下面①②③中选取两个作为条件,证明另外一个成立.
①M在AB上;②PQ∥AB;③|MA|=|MB|.
注:若选择不同的组合分别解答,则按第一个解答计分.
(1)解 由题意得c=2.①
因为双曲线的渐近线方程为
y=±x=±x,
所以=.②
又c2=a2+b2,③
所以联立①②③得a=1,b=,
所以双曲线C的方程为x2-=1.
(2)证明 由题意知直线PQ的斜率存在且不为0,
设直线PQ的方程为y=kx+t(k≠0),
将直线PQ的方程代入C的方程,
整理得(3-k2)x2-2ktx-t2-3=0,
则x1+x2=,x1x2=->0,
所以3-k2<0,
所以x1-x2==.
设点M的坐标为(xM,yM),

两式相减,得y1-y2=2xM-(x1+x2),
又y1-y2=(kx1+t)-(kx2+t)=k(x1-x2),
所以2xM=k(x1-x2)+(x1+x2),
解得xM=;
两式相加,得2yM-(y1+y2)=(x1-x2),
又y1+y2=(kx1+t)+(kx2+t)
=k(x1+x2)+2t,
所以2yM=k(x1+x2)+(x1-x2)+2t,
解得yM==xM.
因此,点M的轨迹为直线y=x,其中k为直线PQ的斜率.
若选择①②作为条件证明③成立:
因为PQ∥AB,
所以直线AB的方程为y=k(x-2),
设A(xA,yA),B(xB,yB),
不妨令点A在直线y=x上,
则由
解得xA=,yA=,
同理可得xB=,yB=-,
所以xA+xB=,yA+yB=.
点M的坐标满足
得xM==,
yM==,
故M为AB的中点,即|MA|=|MB|,即③成立.
若选择①③作为条件证明②成立:
当直线AB的斜率不存在时,点M即为点F(2,0),此时M不在直线y=x上,矛盾;
当直线AB的斜率存在时,易知直线AB的斜率不为0,
设直线AB的方程为y=m(x-2)(m≠0),
A(xA,yA),B(xB,yB),
不妨令点A在直线y=x上,
则由
解得xA=,yA=,
同理可得xB=,yB=-.
因为M在AB上,且|MA|=|MB|,
所以xM==,
yM==,
又点M在直线y=x上,
所以=·,
解得k=m,因此PQ∥AB,即②成立.
若选择②③作为条件证明①成立:
因为PQ∥AB,
所以直线AB的方程为y=k(x-2),
设A(xA,yA),B(xB,yB),
不妨令点A在直线y=x上,
则由
解得xA=,yA=,
同理可得xB=,yB=-.
设AB的中点为C(xC,yC),
则xC==,
yC==.
因为|MA|=|MB|,
所以M在AB的垂直平分线上,
即点M在直线y-yC=-(x-xC),
即y-=-上,
与y=x联立,得xM==xC,
yM==yC
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档