下载此文档

人教2023届高考数学一轮教案第10讲导数之单调性、最值、极值(全国)(Word含答案).zip


高中 高一 上学期 数学 人教版

1340阅读234下载39页1.31 MB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
文档介绍:
第10讲 导数之单调性、最值、极值
【知识点总结】
一.函数单调性与导函数符号的关系
一般地,函数的单调性与其导数正负有以下关系:在某个区间内,如果,那么函数在该区间内单调递增;如果,那么函数在该区间内单调递减.
二.求可导函数单调区间的一般步骤
(1)确定函数的定义域;
(2)求,令,解此方程,求出它在定义域内的一切实数;
(3)把函数的间断点(即的无定义点)的横坐标和的各实根按由小到大的顺序排列起来,然后用这些点把函数的定义域分成若干个小区间;
(4)确定在各小区间内的符号,根据的符号判断函数在每个相应小区间内的增减性.
注①使的离散点不影响函数的单调性,即当在某个区间内离散点处为零,在其余点处均为正(或负)时,在这个区间上仍旧是单调递增(或递减)的.例如,在上,,当时,;当时,,而显然在上是单调递增函数.
②若函数在区间上单调递增,则(不恒为0),反之不成立.因为,即或,当时,函数在区间上单调递增.当时,在这个区间为常值函数;同理,若函数在区间上单调递减,则(不恒为0),反之不成立.这说明在一个区间上函数的导数大于零,是这个函数在该区间上单调递增的充分不必要条件.于是有如下结论:
单调递增;
单调递增;
单调递减;
单调递减.
三.函数极值的概念
设函数在点处连续且,若在点附近的左侧,右侧,则为函数的极大值点;若在附近的左侧,右侧,则为函数的极小值点.
函数的极值是相对函数在某一点附近的小区间而言,在函数的整个定义区间内可能有多个极大值或极小
值,且极大值不一定比极小值大.极大值与极小值统称为极值,极大值点与极小值点统称为极值点.
四.求可导函数极值的一般步骤
(1)先确定函数的定义域;
(2)求导数;
(3)求方程的根;
(4)检验在方程的根的左右两侧的符号,如果在根的左侧附近为正,在右侧附近为负,那么函数在这个根处取得极大值;如果在根的左侧附近为负,在右侧附近为正,那么函数在这个根处取得极小值.
注①可导函数在点处取得极值的充要条件是:是导函数的变号零点,即,且在左侧与右侧,的符号导号.
②是为极值点的既不充分也不必要条件,如,,但不是极值点.
为可导函数的极值点;但为的极值点.
五.函数的最大值、最小值
若函数在闭区间上的图像是一条连续不间断的曲线,则该函数在上一定能够取得最大值与最小值,函数的最值必在极值点或区间端点处取得.
六.求函数的最大值、最小值的一般步骤
设是定义在区间上的函数,在可导,求函数在上的最大值与最小值,可分两步进行:
(1)求函数在内的极值;
(2)将函数的各极值与端点处的函数值比较,其中最大的一个是最大值,最小的一个是最小值.
注①函数的极值反映函数在一点附近情况,是局部函数值的比较,故极值不一定是最值;函数的最值是对函数在整个区间上函数值比较而言的,故函数的最值可能是极值,也可能是区间端点处的函数值;
②函数的极值点必是开区间的点,不能是区间的端点;
③函数的最值必在极值点或区间端点处取得.
【典型例题】
例1.(2021·黑龙江·哈尔滨市第三十二中学校高三期中(文))已知函数.若
图象上的点处的切线斜率为.
(1)求a,b的值;
(2)的极值.
【详解】
(1)解:,


(2)解:由(1)得
,令,得
或,,
-1
(-1,3)
3

0

0

的极大值为,极小值为.
例2.(2021·陕西礼泉·高三开学考试(文))设,函数.
(1)若,求曲线在点处的切线方程;
(2)讨论函数的单调性.
【详解】
(1)解:当时,,定义域为,


曲线在点处的切线方程为,即为.
(2)解:因为,定义域为,所以,
当时,恒成立,
函数在上单调递增;
当时,令,解得,令,解得,
故函数在上单调递增,在上单调递减.
综上可得:当时,在上单调递增;当时,在上单调递增,在上单调递减.
例3.(2022·全国·高三专题练****有三个条件:①函数的图象过点,且;②在时取得极大值;③函数在处的切线方程为,这三个条件中,请选择一个合适的条件将下面的题目补充完整(只要填写序号),并解答本题.
题目:已知函数存在极值,并且______.
(1)求的解析式;
(2)当时,求函数的最值
【详解】
选①:
(1),所以,故;
(2)由,
所以单调递增,故,.
选②:
因为,所以
由题意知,解得,
故,
经检验在时取得极大值,故符合题意,所以,
(2),令,所以或,所以
或时,,单调递增;时,,单调递减;因此在
单调递减,在单调递增,则,,,所以,;
选③
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档