第1节 导数的概念及运算
考试要求 1.通过实例分析,了解平均变化率、瞬时变化率,了解导数概念的实际背景.2.通过函数图象,理解导数的几何意义.3.了解利用导数定义求基本初等函数的导数.4.能利用基本初等函数的导数公式和导数的四则运算法则求简单函数的导数.5.能求简单的复合函数(形如f(ax+b))的导数.
1.导数的概念
(1)如果当Δx→0时,平均变化率无限趋近于一个确定的值,即有极限,则称y=f(x)在x=x0处可导,并把这个确定的值叫做y=f(x)在x=x0处的导数(也称瞬时变化率),记作f′(x0)或y′|x=x0,即f′(x0)= =.
(2)当x=x0时,f′(x0)是一个唯一确定的数,当x变化时,y=f′(x)就是x的函数,我们称它为y=f(x)的导函数(简称导数),记为f′(x)(或y′),即f′(x)=y′=
.
2.导数的几何意义
函数y=f(x)在x=x0处的导数的几何意义就是曲线y=f(x)在点P(x0,f(x0))处的切线的斜率,相应的切线方程为y-f(x0)=f′(x0)(x-x0).
3.基本初等函数的导数公式
基本初等函数
导函数
f(x)=c(c为常数)
f′(x)=0
f(x)=xα(α∈Q,α≠0)
f′(x)=αxα-1
f(x)=sin x
f′(x)=cos__x
f(x)=cos x
f′(x)=-sin__x
f(x)=ax(a>0且a≠1)
f′(x)=axln__a
f(x)=ex
f′(x)=ex
f(x)=logax(a>0且a≠1)
f′(x)=
f(x)=ln x
f′(x)=
4.导数的运算法则
若f′(x),g′(x)存在,则有:
[f(x)±g(x)]′=f′(x)±g′(x);
[f(x)g(x)]′=f′(x)g(x)+f(x)g′(x);
′=(g(x)≠0);
[cf(x)]′=cf′(x).
5.复合函数的定义及其导数
(1)一般地,对于两个函数y=f(u)和u=g(x),如果通过中间变量u,y可以表示成x的函数,那么称这个函数为函数y=f(u)与u=g(x)的复合函数,记作y=f(g(x)).
(2)复合函数y=f(g(x))的导数和函数y=f(u),u=g(x)的导数间的关系为yx′=yu′·ux′,即y对x的导数等于y对u的导数与u对x的导数的乘积.
1.f′(x0)代表函数f(x)在x=x0处的导数值;(f(x0))′是函数值f(x0)的导数,则(f(x0))′=0.
2.′=-(f(x)≠0).
3.曲线的切线与曲线的公共点的个数不一定只有一个,而直线与二次曲线相切只有一个公共点.
4.函数y=f(x)的导数f′(x)反映了函数f(x)的瞬时变化趋势,其正负号反映了变化的方向,其大小|f′(x)|反映了变化的快慢,|f′(x)|越大,曲线在这点处的切线越“陡”.
1.思考辨析(在括号内打“√”或“×”)
(1)f′(x0)是函数y=f(x)在x=x0附近的平均变化率.( )
(2)函数f(x)=sin(-x)的导数f′(x)=cos x.( )
(3)求f′(x0)时,可先求f(x0),再求f′(x0).( )
(4)曲线y=f(x)在某点处的切线与曲线y=f(x)过某点的切线意义是相同的.( )
答案 (1)× (2)× (3)× (4)×
解析 (1)f′(x0)表示y=f(x)在x=x0处的瞬时变化率,(1)错.
(2)f(x)=sin(-x)=-sin x,则f′(x)=-cos x,(2)错.
(3)求f′(x0)时,应先求f′(x),再代入求值,(3)错.
(4)“在某点”的切线是指以该点为切点的切线,因此此点横坐标处的导数值为切线的斜率;而对于“过某点”的切线,则该点不一定是切点,要利用解方程组的思想求切线的方程,在曲线上某点处的切线只有一条,但过某点的切线可以不止一条,(4)错.
2.(多选)下列导数的运算中正确的是( )
A.(3x)′=3xln 3
B.(x2ln x)′=2xln x+x
C.′=
D.(sin xcos x)′=cos 2x
答案 ABD
解析 因为′=,所以C项错误,其余都正确.
3.(2021·全国甲卷)曲线y=在点(-1,-3)处的切线方程为________.
答案 y=5x+2
解析 y′=′==,所以y′|x=-1==5,所以切线方程为y+3=5(x+1),即y=5x+2.
4.(2020·全国Ⅲ卷)设函数f(x)=.若f′(1)=,则a=________.
答案 1
解析 由f′(x)=,可得f′(1)==,即=,解得a=1.