下载此文档

人教版高中数学第2讲 空间几何体的表面积与体积.doc


高中 高二 上学期 数学 人教版

1340阅读234下载7页637 KB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
人教版高中数学第2讲 空间几何体的表面积与体积.doc
文档介绍:
第2讲 空间几何体的表面积与体积
一、选择题
1.(2015·全国Ⅰ卷)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有(  )
A.14斛 B.22斛
C.36斛 D.66斛
解析 设米堆的底面半径为r尺,则r=8,所以r=.
所以米堆的体积为V=×π·r2·5=··5≈(立方尺).
故堆放的米约有÷1.62≈22(斛).
答案 B
2.某几何体的三视图如图所示,且该几何体的体积是3,则正视图中的x的值是(  )
A.2 B. C. D.3
解析 由三视图知,该几何体是四棱锥,底面是直角梯形,且S底=(1+2)×2=3.∴V=x·3=3,解得x=3.
答案 D
3.(2017·合肥模拟)一个四面体的三视图如图所示,则该四面体的表面积是(  )
A.1+ B.2+ C.1+2 D.2
解析 四面体的直观图如图所示.
侧面SAC⊥底面ABC,且△SAC与△ABC均为腰长是的等腰直角三角形,SA=SC=AB=BC=,AC=2.
设AC的中点为O,连接SO,BO,则SO⊥AC,又SO⊂平面SAC,平面SAC∩平面ABC=AC,
∴SO⊥平面ABC,又BO⊂平面ABC,∴SO⊥BO.
又OS=OB=1,∴SB=,
故△SAB与△SBC均是边长为的正三角形,故该四面体的表面积为2×××+2××()2=2+.
答案 B
4.(2015·全国Ⅱ卷)已知A,B是球O的球面上两点,∠AOB=90°,C为该球面上的动点.若三棱锥O-ABC体积的最大值为36,则球O的表面积为(  )
A.36π B.64π C.144π D.256π
解析 因为△AOB的面积为定值,所以当OC垂直于平面AOB时,三棱锥O-ABC的体积取得最大值.由×R2×R=36,得R=6.从而球O的表面积S=4πR2=144π.
答案 C
5.(2017·青岛模拟)如图,四棱锥P-ABCD的底面ABCD为平行四边形,NB=2PN,则三棱锥N-PAC与三棱锥D-PAC的体积比为(  )
A.1∶2 B.1∶8
C.1∶6 D.1∶3
解析 设点P,N在平面ABCD内的投影分别为点P′,N′,则PP′⊥平面ABCD,NN′⊥平面ABCD,所以PP′∥NN′,
则在△BPP′中,由BN=2PN得=.
V三棱锥N-PAC=V三棱锥P-ABC-V三棱锥N-ABC
=S△ABC·PP′-S△ABC·NN′
=S△ABC·(PP′-NN′)=S△ABC·PP′
=S△ABC·PP′,V三棱锥D-PAC=V三棱锥P-ACD=S△ACD·PP′,
又∵四边形ABCD是平行四边形,∴S△ABC=S△ACD,
∴=.故选D.
答案 D
二、填空题
6.现有橡皮泥制作的底面半径为5,高为4的圆锥和底面半径为2、高为8的圆柱各一个.若将它们重新制作成总体积与高均保持不变,但底面半径相同的新
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档