下载此文档

人教版高中数学8 第7讲 抛物线 新题培优练.doc


高中 高二 上学期 数学 人教版

1340阅读234下载8页235 KB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
人教版高中数学8 第7讲 抛物线 新题培优练.doc
文档介绍:
[基础题组练]
1.(2019·高考全国卷Ⅱ)若抛物线y2=2px(p>0)的焦点是椭圆+=1的一个焦点,则p=(  )
A.2 B.3
C.4 D.8
解析:选D.由题意,知抛物线的焦点坐标为,椭圆的焦点坐标为(±,0),所以=,解得p=8,故选D.
2.若点A,B在抛物线y2=2px(p>0)上,O是坐标原点,若正三角形OAB的面积为4,则该抛物线方程是(  )
A.y2=x B.y2=x
C.y2=2x D.y2=x
解析:选A.根据对称性,AB⊥x轴,由于正三角形的面积是4,故AB2=4,故AB=4,正三角形的高为2,故可设点A的坐标为(2,2),代入抛物线方程得4=4p,解得p=,故所求抛物线的方程为y2=x.故选A.
3.(2019·甘肃张掖诊断)过抛物线y2=4x的焦点的直线l交抛物线于P(x1,y1),Q(x2,y2)两点,如果x1+x2=6,则|PQ|=(  )
A.9 B.8
C.7 D.6
解析:选B.抛物线y2=4x的焦点为F(1,0),准线方程为x=-1.根据题意可得,|PQ|=|PF|+|QF|=x1+1+x2+1=x1+x2+2=8.故选B.
4.(2019·昆明调研)过抛物线C:y2=2px(p>0)的焦点F且倾斜角为锐角的直线l与C交于A,B两点,过线段AB的中点N且垂直于l的直线与C的准线交于点M,若|MN|=|AB|,则l的斜率为(  )
A. B.
C. D.1
解析:选B.设抛物线的准线为m,分别过点A,N,B作AA′⊥m,NN′⊥m,BB′⊥m,
垂足分别为A′,N′,B′.
因为直线l过抛物线的焦点,所以|BB′|=|BF|,|AA′|=|AF|.
又N是线段AB的中点,|MN|=|AB|,所以|NN′|=(|BB′|+|AA′|)=(|BF|+|AF|)=|AB|=|MN|,所以∠MNN′=60°,则直线MN的倾斜角为120°.又MN⊥l,所以直线l的倾斜角为30°,斜率是.故选B.
5.(2019·合肥模拟)已知直线y=k(x+2)(k>0)与抛物线C:y2=8x相交于A,B两点,F为C的焦点.若|FA|=2|FB|,则k=(  )
A. B.
C. D.
解析:选D.设抛物线C:y2=8x的准线为l,易知l:x=-2,
直线y=k(x+2)恒过定点P(-2,0),
如图,过A,B分别作AM⊥l于点M,BN⊥l于点N,
由|FA|=2|FB|,知|AM|=2|BN|,
所以点B为线段AP的中点,连接OB,
则|OB|=|AF|,
所以|OB|=|BF|,所以点B的横坐标为1,
因为k>0,
所以点B的坐标为(1,2),
所以k==.故选D.
6.抛物线C:y2=2px(p>0)的焦点为F,点O是坐标原点,过点O,F的圆与抛物线C的准线相切,且该圆的面积为36π,则抛物线的方程为________.
解析:设满足题意的圆的圆心为M.
根据题意可知圆心M在抛物线上,
又因为圆的面积为36π,
所以圆的半径为6,则|MF|=xM+=6,即xM=6-,
又由题意可知xM=,所以=6-,解得p=8.
所以抛物线方程为y2=16x.
答案:y2=16x
7.设抛物线C
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档