下载此文档

人教版高中数学第6讲 正弦定理和余弦定理.doc


高中 高二 上学期 数学 人教版

1340阅读234下载16页489 KB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
人教版高中数学第6讲 正弦定理和余弦定理.doc
文档介绍:
第6讲 正弦定理和余弦定理
一、知识梳理
1.正弦定理和余弦定理
定理
正弦定理
余弦定理
内容
===2R
(R为△ABC外接圆半径)
a2=b2+c2-2bccos_A;
b2=c2+a2-2cacos_B;
c2=a2+b2-2abcos_C
变形
(1)a=2Rsin A,b=2Rsin_B,c=2Rsin_C;
(2)a∶b∶c=sin_A∶sin_B∶sin_C;
(3)asin B=bsin A,bsin C=csin B,asin C=csin A
cos A=;
cos B=;
cos C=
2.△ABC的面积公式
(1)S△ABC=a·h(h表示边a上的高).
(2)S△ABC=absin C=acsin B=bcsin A.
(3)S△ABC=r(a+b+c)(r为内切圆半径).
3.三角形解的判断
A为锐角
A为钝角或直角
图形
关系式
a=bsin A
bsin A<a<b
a≥b
a>b
解的个数
一解
两解
一解
一解
[注意] 上表中A为锐角时,a<bsin A,无解.
A为钝角或直角时,a=b,a<b均无解.
常用结论
1.三角形内角和定理
在△ABC中,A+B+C=π;
变形:=-.
2.三角形中的三角函数关系
(1)sin(A+B)=sin C.
(2)cos(A+B)=-cos C.
(3)sin=cos .
(4)cos=sin .
3.三角形中的射影定理
在△ABC中,a=bcos C+ccos B;
b=acos C+ccos A;
c=bcos A+acos B.
二、教材衍化
1.在△ABC中,角A,B,C所对的边分别为a,b,c若c<bcos A,则△ABC为(  )
A.钝角三角形       B.直角三角形
C.锐角三角形 D.等边三角形
答案:A
2.在△ABC中,AB=5,AC=3,BC=7,则∠BAC=(  )
A. B.
C. D.
解析:选C.因为在△ABC中,设AB=c=5,AC=b=3,BC=a=7,所以由余弦定理得cos∠BAC===-,因为∠BAC为△ABC的内角,所以∠BAC=.故选C.
3.在△ABC中,A=60°,AC=4,BC=2,则△ABC的面积等于________.
解析:设△ABC中,角A,B,C对应的边分别为a,b,c,由题意及余弦定理得cos A===,解得c=2.所以S=bcsin A=×4×2×sin 60°=2.
答案:2
一、思考辨析
判断正误(正确的打“√”,错误的打“×”)
(1)三角形中三边之比等于相应的三个内角之比.(  )
(2)在△ABC中,若sin A>sin B,则A>B.(  )
(3)在△ABC中的六个元素中,已知任意三个元素可求其他元素.(  )
答案:(1)× (2)√ (3)×
二、易错纠偏
(1)利用正弦定理求角,忽视条件限制出现增根;
(2)不会灵活运用正弦、余弦定理.
1.△ABC的内角A,B,C的对边分别为a,b,c.已知C=60°,b=,c=3,则A=________.
解析:由题意:=,即sin B===,结合b<c可得B=45°,则A=180°-B-C=75°.
答案:75°
2.设△ABC的内角A,B,C的对边分别为a,b,c,且a=2,cos C=-,3sin A=2sin B,则c=________.
解析:由3sin A=2sin B及正弦定理,得3a=2b,所以b=a=3.
由余弦定理cos C=,
得-=,解得c=4.
答案:4
考点一 利用正、余弦定理解三角形(基础型)
通过对任意三角形边长和角度关系的探索,掌握正弦定理、余弦定理,能正确地解决问题.
核心素养:数学运算
(1)(2019·高考全国卷Ⅰ)△ABC的内角A,B,C的对边分别为a,b,c.已知asin A-bsin B=4csin C,cos A=-,则=(  )
A.6            B.5
C.4 D.3
(2)(2020·济南市学****质量评估)已知△ABC的内角A,B,C的对边分别为a,b,c,且2c+a=2bcos A.
①求角B的大小;
②若a=5,c=3,边AC的中点为D,求BD的长.
【解】 (1)选A.由题意及正弦定理得,b2-a2=-4c2,所以由余弦定理得,cos A===-,得=6.故选A.
(2)①由2c+a=2bcos A及正弦定理,
得2sin C+sin A=
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档