下载此文档

人教版高中数学第05讲 函数的奇偶性与周期性(讲)解析版.docx


高中 高二 上学期 数学 人教版

1340阅读234下载7页128 KB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
人教版高中数学第05讲 函数的奇偶性与周期性(讲)解析版.docx
文档介绍:
第05讲 函数的奇偶性与周期性
【学科素养】数学抽象、数学运算、数学建模、逻辑推理、直观想象
【课标解读】
1.抽象函数的奇偶性与周期性;
2.利用奇偶性与周期性求参数取值范围;
3.函数性质的综合应用问题.
【备考策略】
1.判断函数的奇偶性与周期性;
2.函数的奇偶性、周期性,通常与抽象函数、函数的图象以及函数的单调性结合考查,常结合三角函数加以考查.
【核心知识】
知识点一 函数的奇偶性
奇偶性
定义
图象特点
偶函数
如果对于函数f(x)的定义域内任意一个x,都有f(-x)=f(x),那么函数f(x)是偶函数
关于y轴对称
奇函数
如果对于函数f(x)的定义域内任意一个x,都有f(-x)=-f(x),那么函数f(x)是奇函数
关于原点对称
知识点二 函数的周期性
(1)周期函数:对于函数y=f(x),如果存在一个非零常数T,使得当x取定义域内的任何值时,都有f(x+T)=f(x),那么就称函数y=f(x)为周期函数,称T为这个函数的周期.
(2)最小正周期:如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫做f(x)的最小正周期.
【特别提醒】
1.(1)如果一个奇函数f(x)在原点处有定义,即f(0)有意义,那么一定有f(0)=0.
(2)如果函数f(x)是偶函数,那么f(x)=f(|x|).
2.奇函数在两个对称的区间上具有相同的单调性;偶函数在两个对称的区间上具有相反的单调性.
3.函数周期性常用结论
对f(x)定义域内任一自变量的值x:
(1)若f(x+a)=-f(x),则T=2a(a>0).
(2)若f(x+a)=,则T=2a(a>0).
(3)若f(x+a)=-,则T=2a(a>0).
4.对称性的三个常用结论
(1)若函数y=f(x+a)是偶函数,则函数y=f(x)的图象关于直线x=a对称.
(2)若对于R上的任意x都有f(2a-x)=f(x)或f(-x)=f(2a+x),则y=f(x)的图象关于直线x=a对称.
(3)若函数y=f(x+b)是奇函数,则函数y=f(x)的图象关于点(b,0)中心对称.
【高频考点】
高频考点一 函数奇偶性的判定
例1.【2020·全国Ⅱ卷】设函数,则f(x)
A.是偶函数,且在单调递增 B.是奇函数,且在单调递减
C.是偶函数,且在单调递增 D.是奇函数,且在单调递减
【答案】D
【解析】由得定义域为,关于坐标原点对称,
又,
为定义域上的奇函数,可排除AC;
当时,,
在上单调递增,在上单调递减,
在上单调递增,排除B;
当时,,
在上单调递减,在定义域内单调递增,
根据复合函数单调性可知:在上单调递减,D正确。
【方法技巧】判断函数奇偶性的常用方法
(1)定义法:
确定函数的奇偶性时,必须先判定函数定义域是否关于原点对称.若对称,再化简解析式后验证f(-x)=±f(x)或其等价形式f(-x)±f(x)=0是否成立.
(2)图象法:
f(x)的图像关于原点对称,f(x)为奇函数;
f(x)的图像关于y轴对称,f(x)为偶函数。
(3)性质法:
设f(x),g(x)的定义域分别是D1,D2,那么在它们的公共定义
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档