下载此文档

人教高中数学专题08 立体几何解答题常考全归类(精讲精练)(解析版).docx


高中 高一 上学期 数学 人教版

1340阅读234下载85页8.79 MB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
人教高中数学专题08 立体几何解答题常考全归类(精讲精练)(解析版).docx
文档介绍:
专题08 立体几何解答题常考全归类
【命题规律】
空间向量是将空间几何问题坐标化的工具,是常考的重点,立体几何解答题的基本模式是论证推理与计算相结合,以某个空间几何体为依托,分步设问,逐层加深.解决这类题目的原则是建系求点、坐标运算、几何结论.作为求解空间角的有力工具,通常在解答题中进行考查,属于中等难度.
【核心考点目录】
核心考点一:非常规空间几何体为载体
核心考点二:立体几何探索性问题
核心考点三:立体几何折叠问题
核心考点四:立体几何作图问题
核心考点五:立体几何建系繁琐问题
核心考点六:两角相等(构造全等)的立体几何问题
核心考点七:利用传统方法找几何关系建系
核心考点八:空间中的点不好求
核心考点九:创新定义
【真题回归】
1.(2022·天津·统考高考真题)直三棱柱中,,D为的中点,E为的中点,F为的中点.
(1)求证:平面;
(2)求直线与平面所成角的正弦值;
(3)求平面与平面所成二面角的余弦值.
【解析】(1)证明:在直三棱柱中,平面,且,则
以点为坐标原点,、、所在直线分别为、、轴建立如下图所示的空间直角坐标系,
则、、、、、、、、,则,
易知平面的一个法向量为,则,故,
平面,故平面.
(2),,,
设平面的法向量为,则,
取,可得,.
因此,直线与平面夹角的正弦值为.
(3),,
设平面的法向量为,则,
取,可得,则,
因此,平面与平面夹角的余弦值为.
2.(2022·全国·统考高考真题)如图,四面体中,,E为的中点.
(1)证明:平面平面;
(2)设,点F在上,当的面积最小时,求与平面所成的角的正弦值.
【解析】(1)因为,E为的中点,所以;
在和中,因为,
所以,所以,又因为E为的中点,所以;
又因为平面,,所以平面,
因为平面,所以平面平面.
(2)连接,由(1)知,平面,因为平面,
所以,所以,
当时,最小,即的面积最小.
因为,所以,
又因为,所以是等边三角形,
因为E为的中点,所以,,
因为,所以,
在中,,所以.
以为坐标原点建立如图所示的空间直角坐标系,
则,所以,
设平面的一个法向量为,
则,取,则,
又因为,所以,
所以,
设与平面所成的角的正弦值为,
所以,
所以与平面所成的角的正弦值为.
3.(2022·浙江·统考高考真题)如图,已知和都是直角梯形,,,,,,,二面角的平面角为.设M,N分别为的中点.
(1)证明:;
(2)求直线与平面所成角的正弦值.
【解析】(1)过点、分别做直线、的垂线、并分别交于点、.
∵四边形和都是直角梯形,,,由平面几何知识易知,,则四边形和四边形是矩形,∴在Rt和Rt,,
∵,且,
∴平面是二面角的平面角,则,
∴是正三角形,由平面,得平面平面,
∵是的中点,,又平面,平面,可得,而,∴平面,而平面.
(2)因为平面,过点做平行线,所以以点为原点, ,、所在直线分别为轴、轴、轴建立空间直角坐标系,
设,则,
设平面的法向量为
由,得,取,
设直线与平面所成角为,
∴.
4.(2022·全国·统考高考真题)如图,是三棱锥的高,,,E是的中点.
(1)证明:平面;
(2)若,,,求二面角的正弦值.
【解析】(1)证明:连接并延长交于点,连接、,
因为是三棱锥的高,所以平面,平面,
所以、,
又,所以,即,所以,
又,即,所以,,
所以
所以,即,所以为的中点,又为的中点,所以,
又平面,平面,
所以平面
(2)过点作,如图建立平面直角坐标系,
因为,,所以,
又,所以,则,,
所以,所以,,,,
所以,
则,,,
设平面的法向量为,则,令,则,,所以;
设平面的法向量为,则,
令,则,,所以;
所以.
设二面角的大小为,则,
所以,即二面角的正弦值为.
5.(2022·全国·统考高考真题)如图,四面体中,,E为AC的中点.
(1)证明:平面平面ACD;
(2)设,点F在BD上,当的面积最小时,求三棱锥的体积.
【解析】(1)由于,是的中点,所以.
由于,所以,
所以,故,
由于,平面,
所以平面,
由于平面,所以平面平面.
(2)[方法一]:判别几何关系
依题意,,三角形是等边三角形,
所以,
由于,所以三角形是等腰直角三角形,所以.
,所以,
由于,平面,所以平面.
由于,所以,
由于,所以,
所以,所以,
由于,所以当最短时,三角形的面积最小
过作,垂足为,
在中,,解得,
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档