下载此文档

人教版高中数学第7讲 解三角形应用举例.doc


高中 高二 上学期 数学 人教版

1340阅读234下载7页1002 KB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
人教版高中数学第7讲 解三角形应用举例.doc
文档介绍:
第7讲 解三角形应用举例
一、选择题
1.在相距2 km的A,B两点处测量目标点C,若∠CAB=75°,∠CBA=60°,则A,C两点之间的距离为(  )
A. km B. km
C. km D.2 km
解析 如图,在△ABC中,由已知可得∠ACB=45°,∴=,∴AC=2×=(km).
答案 A
2.一艘海轮从A处出发,以每小时40海里的速度沿南偏东40°的方向直线航行,30分钟后到达B处,在C处有一座灯塔,海轮在A处观察灯塔,其方向是南偏东70°,在B处观察灯塔,其方向是北偏东65°,那么B,C两点间的距离是(  )
A.10海里 B.10海里
C.20海里 D.20海里
解析 如图所示,易知,
在 △ABC中,AB=20,∠CAB=30°,∠ACB=45°,
根据正弦定理得=,
解得BC=10(海里).
答案 A
3.(2017·合肥调研)如图所示,已知两座灯塔A和B与海洋观察站C的距离都等于a km,灯塔A在观察站C的北偏东20°,灯塔B在观察站C的南偏东40°,则灯塔A与B的距离为(  )
A.a km B. a km
C.a km D.2a km
解析 由题图可知,∠ACB=120°,
由余弦定理,得AB2=AC2+BC2-2AC·BC·cos∠ACB
=a2+a2-2·a·a·=3a2,解得AB=a(km).
答案 B
4.如图,一条河的两岸平行,河的宽度d=0.6 km,一艘客船从码头A出发匀速驶往河对岸的码头B.已知AB=1 km,水的流速为2 km/h,若客船从码头A驶到码头B所用的最短时间为6 min,则客船在静水中的速度为(  )
A.8 km/h B.6 km/h
C.2 km/h D.10 km/h
解析 设AB与河岸线所成的角为θ,客船在静水中的速度为v km/h,由题意知,sin θ==,从而cos θ=,所以由余弦定理得=+12-2××2×1×,解得v=6.选B.
答案 B
5.如图,测量河对岸的塔高AB时可以选与塔底B在同一水平面内的两个测点C与D,测得∠BCD=15°,∠BDC=30°,CD=30,并在点C测得塔顶A的仰角为60°,则塔高AB等于(  )
A.5 B.15
C.5 D.15
解析 在△BCD中,∠CBD=180°-15°-30°=135°.
由正弦定理得=,所以BC=15.
在Rt△ABC中,AB=BCtan ∠ACB=15×=15.
答案 D
二、填空题
6.如图所示,一艘海轮从A处出发,测得灯塔在海轮的北偏东15°方向,与海轮相距20海里的B处,海轮按北偏西60°的方向航行了30分钟后到达C处,又测得灯塔在海轮的北偏东75°的方向,则海轮的速度为________海里/分.
解析 由已知得∠ACB=45°,∠B=60°,
由正弦定理得=,所以AC===10,
所以海轮航行的速度为=(海里/分).
答案 
7.江岸边有一炮台高30 m,江中有两条船,船与炮台底部在同一水平面上,由炮台顶部测得俯角分别为45°和60°,而且两条船与炮台底部连线成30°角,则两条船相距________m.
解析 如图,OM=AOtan 45°=30(m),
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档