下载此文档

人教版高中数学第5讲 二项分布与正态分布(1).doc


高中 高二 上学期 数学 人教版

1340阅读234下载7页411 KB

下载提示
  • 1.该资料是网友上传的,本站提供全文预览,预览什么样,下载就什么样。
  • 2.下载该文档所得收入归上传者、原创者。
  • 3.下载的文档,不会出现我们的网址水印。
下载所得到的文件列表
人教版高中数学第5讲 二项分布与正态分布(1).doc
文档介绍:
第5讲 二项分布与正态分布
一、选择题
1.(2014·全国Ⅱ卷)某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是(  )
A.0.8 B.0.75 C.0.6 D.0.45
解析 记事件A表示“一天的空气质量为优良”,事件B表示“随后一天的空气质量为优良”,P(A)=0.75,P(AB)=0.6.由条件概率,得P(B|A)===0.8.
答案 A
2.(2017·衡水模拟)先后抛掷硬币三次,则至少一次正面朝上的概率是(  )
A. B. C. D.
解析 三次均反面朝上的概率是=,所以至少一次正面朝上的概率是1-=.
答案 D
3.(2016·青岛一模)设随机变量X服从正态分布N(1,σ2),则函数f(x)=x2+2x+X不存在零点的概率为(  )
A. B. C. D.
解析 ∵函数f(x)=x2+2x+X不存在零点,∴Δ=4-4X<0,∴X>1,∵X~N(1,σ2),∴P(X>1)=,故选C.
答案 C
4.(2017·武昌区模拟)某居民小区有两个相互独立的安全防范系统A和B,系统A和系统B在任意时刻发生故障的概率分别为和p,若在任意时刻恰有一个系统不发生故障的概率为,则p=(  )
A. B. C. D.
解析 由题意得(1-p)+p=,∴p=,故选B.
答案 B
5.(2016·天津南开调研)一袋中有5个白球,3个红球,现从袋中往外取球,每次任取一个记下颜色后放回,直到红球出现10次时停止,设停止时共取了X次球,则P(X=12)等于(  )
A.C B.C
C.C D.C
解析 由题意知第12次取到红球,前11次中恰有9次红球2次白球,由于每次取到红球的概率为,
所以P(X=12)=C××.
答案 D
二、填空题
6.有一批种子的发芽率为0.9,出芽后的幼苗成活率为0.8,在这批种子中,随机抽取一粒,则这粒种子能成长为幼苗的概率为________.
解析 设种子发芽为事件A,种子成长为幼苗为事件B(发芽又成活为幼苗).
依题意P(B|A)=0.8,P(A)=0.9.
根据条件概率公式P(AB)=P(B|A)·P(A)=0.8×0.9=0.72,即这粒种子能成长为幼苗的概率为0.72.
答案 0.72
7.假设每天从甲地去乙地的旅客人数X是服从正态分布N(800,502)的随机变量,记一天中从甲地去乙地的旅客人数800<X≤900的概率为p0,则p0=________.
解析 由X~N(800,502),知μ=800,σ=50,
又P(700<X≤900)=0.954 4,
则P(800<X≤900)=×0.954 4=0.477 2.
答案 0.477 2
8.设随机变量X~B(2,p),随机变量Y~B(3,p),若P(X≥1)=,则P(Y≥1)=________.
解析 ∵X~B(2,p),∴P(X≥1)=1-P(X=0)=1-C(1-p)2=,解得p=.又Y~B(3,p),∴P(Y≥1)=1-P(Y=0)=1-C(1-p)3=.
答案 
三、解答题
9.(2015·湖南卷
内容来自帮提分https://www.sfbroad.com转载请标明出处.
相关文档